
8 ; LO G I N : VO L . 35, N O. 4

R O N D I L L E Y

making sense
of logs
Ron Dilley has spent the majority of the
past two decades in the fields of program-
ming, technical support, administration, and
security engineering. His involvement in in-
formation systems and information security
is informed by his vast experience, including
several open source projects and work on the
2005 DARPA Grand Challenge. After several
years as a UNIX administrator, Dilley moved
into information systems security. He cur-
rently leads an information security team at
a Fortune 500 company.

ron.dilley@uberadmin.com

E F F E C T I V E L O G A N A LY S I S D O E S N O T
need to be complex or expensive. Nor do
you need to have significant prior knowl-
edge of the data to find anomalies and clear
indications of infections. This may sound
like the preamble on some glossy product
sheet, but don’t be fooled. I am not trying to
sell you anything. I am trying to encourage
you to read on about the log-related tools,
techniques, and successes I have had over
the last few years.

To secure ourselves against defeat lies in our
own hands, but the opportunity of defeating
the enemy is provided by the enemy himself.

—Sun Tzu, 544–496 BC

A Short History

I have nurtured a love-hate relationship with logs
for almost 20 years. It would be fair to say that my
feelings for logs border on obsessive. Instead of
spending the following paragraphs on a “logging is
good” rant, I present a history of the past few years
of my logging obsession and some of the ideas,
tools, and techniques that I have worked on.

I was a closet logger for many years. It started
back when I was a UNIX administrator running a
large call center for a cellular carrier in California.
I always subscribed to the idea that it was better
to have and not need than to need and not have.
I found myself in many situations where solving
a problem started and ended with reviewing the
copious logs diligently collected from across my en-
vironments. I started with awk, moved up to perl,
and fiddled around with open source tools like
swatch [1] and xlogmaster [2]. As my environments
got larger and my logging fervor grew, the volume
of log data became unwieldy. It also became harder
and harder to make sense of or use all the log data
I was storing.

My love of logs did not abate when I switched from
system administration to information security. My
frustration, on the other hand, grew and grew and
grew. I became convinced that there were interest-
ing “things” locked in the massive volume of log
data that I was compulsively writing to disk every
day. Unfortunately, I could not find any way to set
these “things” free. I searched year after year for
some way, some tool or script. With every new

; LO G I N : AUGUST 201 0 M A KI N G SE N SE O F LO GS 9

product that claimed to solve the logging problem, my heart would leap and
subsequently break after grilling the sales people or banging on the product
showed that it was not doing anything that my scripts could not already do.

A funny thing happened to me on the way to a security conference that
changed everything. It would be more accurate to say that I met another
obsessed logger at a conference but for the purpose of this story, it started on
the way to the conference. I was thumbing through the schedule for USENIX
Security on the plane, looking to see what talks I would attend and noticed
that a guy by the name of Marcus Ranum [3] was scheduled to talk about
logging. It turned out that he was actually scheduled to rant about logging,
but I am getting ahead of myself. It was time well spent. Not because he
presented any tools or techniques that blew me away or solved all of my
problems, but because he too believed that there were “things” locked away
in the logs. I sat in the front row and made a point of introducing myself
and plying him with booze and Thai food after class.

We have been collaborating on ways to get at those sneaky little “things” in
the logs ever since.

Good Analysis Starts with Reading Your Logs

Log analysis is a lexical problem.

 —Marcus Ranum

We focused our work on log datasets stored as ASCII text files. These files
were generated using syslog. The best and worst thing about logs produced
by syslog [4] is that the format is very open. Other than the PRIORITY and
HEADER sections, which have some formatting requirements, the MESSAGE
should only contain printable characters, and the whole syslog line should
not exceed 1024 bytes. The absence of formatting requirements makes for an
interesting parsing problem. For years I used regular expressions to chop up
log data. Marcus had a different idea. He built a parser using lex and yacc
[5] and spent a few days with Abe Singer at the San Diego Supercomputer
Center crunching 10 years’ worth of log data. The parser converted raw logs
into printf [6] style templates that represented each log line. For example,
a simple log line like “Oct 11 22:14:15 mymachine su: ‘su root’ failed for
lonvick on /dev/pts/8” was converted to “%s %d %d:%d:%d %s %s %s %s
%s %s %s %s %s”. The reason for running this tool against 10 years of data
was to get an idea of how much variability there was in the general format
of syslog-based log data from a diverse set of UNIX computers. Even with
this simple tokenizing strategy, Marcus found about 50,000 different formats
across 10 years of data. The graph in Figure 1 (next page) plots the unique
templates discovered and clearly shows the increases in new log structures
over time. This early version of the parser turned out to be an effective
Linux major-release detector, as these spikes aligned well with deployments
of new OS versions.

I used the same tokenizing strategy against two years of logs from a For-
tune 500 biotechnology company and found less than 8,000 different line
formats. This work encouraged me to build a non-regex parser [7] that could
extract interesting chunks of data from log data without prior knowledge
of the overall log format. In doing so, I came across a couple of interesting
and helpful side effects of this parsing methodology. My goal was to make
the parser smarter about types of data that I was sure would show up in the
logs. To start, this included IP addresses and timestamps.

10 ; LO G I N : VO L . 35, N O. 4

F I G U R E 1 : P L O T O F U N I Q U E T E M P L A T E S

The utility read logs and converted them into a printf-like template with
special tokens for time and date strings as well as IP addresses. White spaces
and special printable characters were stored as part of the template. IP ad-
dresses and time/date strings were converted to strings. Each non-numeric
value associated with a token was stored in a binary tree unique to the tem-
plate and the token. For example,

Feb 5 17:32:18 10.0.0.99 Use the BFG!

would be converted into the template “%D %IP %s %s %s!”. With the time/
date stamp and IP address converted to strings, the five strings would be
stored in separate binary trees all associated with the template that the log
line matched. At first, I did not realize what I had just built or the interest-
ing and unexpected side effect of organizing the parsed log data in this way.
The tool could represent any log line by its template and a unique identifier
for each variable. This simple approach was easy to implement, but was inef-
ficient in storing some fields. I experimented with using various compres-
sion techniques to save space. A subsequent revision to my code converted
recognizable strings such as dates and IP addresses to numbers and encoded
them as the numeric value. Treating the fields this way allowed me to see log
types I had not seen before, even if some fields had inconsistently variable
data, such as the month and day string in a date field. A further optimiza-
tion was to treat short fields as part of the template so that I did not have
to use more space to encode the field than the value consumed in the log. I
kept all of the variables in RAM, so I settled for organizing them in binary
trees ordered using Huffman encoding [8]. This made it possible to rep-
resent variables as a series of bits. Consider this: the example log message
above is 39 characters long, and if we assign a two-byte numeric ID to the
template (0x01), store the timestamp and IP address as four-byte numbers,
and assume that “Use”, “the”, and “BFG” are the first items in each binary
tree, we have stored 39 bytes of data in 10 bytes and the bits required to tra-
verse the Huffman encoded binary tree. My non-regex parser became a tool
called logstore [9]. I added some improvements such as assuming that binary
trees with only one item could be summarized and moved to the template.
Logstore produced 40-to-1 compression of my log data and was much faster
than other compression tools that were CPU intensive. The second unex-
pected benefit of this method came from keeping track of all of the variable
strings associated with each log template. By recoding the log line number
where each variable occurs, the logstore parsed data format provided a high-
speed keyword search capability. I almost regretted encoding some fields
as numbers to save space, but good compression was a higher priority than

; LO G I N : AUGUST 201 0 M A KI N G SE N SE O F LO GS 11

faster searching at the time. In hindsight, having an option to encode to save
space or speed up searches would have been useful.

It was amazing how much fun I could have while taking a stab at regex-less
parsing.

Quickly parsing data without significant prior knowledge was nice. We
found that non-regex parsing was able to detect new forms of log data that
were ignored by regex-based parsers. Unless great care was taken when
building the regex parsers, new or edge-case logs were ignored. Using the
abstraction of the log templates allowed me to see when a new type of log
started showing up by sending the templates into a tool that Marcus wrote
called never before seen (NBS) [10]. Additionally, I was able to do some simple
frequency analysis of the types of logs that were seen without fighting with
the complexity of variables.

Alas, it was not enough to satiate my hunger, my need to find those de-
vious “things” that continued to elude detection. A couple of years ago,
in response to questions about the efficacy of data-loss prevention systems
for my environment, I sat down with Marcus to design a tool that could give
me an idea of what we could see on the network beyond simple pattern-
matching signatures. Perhaps then I could find those sly little “things” hid-
den in my log data.

Someone to Watch over Me

The number of times an uninteresting thing happens—is an interesting thing.

—Marcus Ranum

What I needed was a configurable log filter that did not rely on known bad
patterns. What came out of our working sessions was a solution with three
distinct components. The first components were data collectors that stored
network traffic, syslog data, and infrastructure service logs such as DHCP
and DNS. The second was a set of parsers that converted the various data
sources on the collectors into pseudo-XML format. The last was the tool
where all the real magic happened, called overwatch [11]. From a high level,
the system works like this:

1. Data collectors generate data which is written to syslog.

2. Syslog data is forwarded to a central repository.

3. Periodically, a batch job kicks off a log parser to convert the syslog data to
pXML.

4. The batch job then submits the pXML data to overwatch via a domain
socket.

5. Overwatch applies rules and stores scoring information in memory ma-
trixes.

6. Overwatch sends warnings and alerts based on configurable thresholds.

DATA COLLECTORS

Our collectors come in all shapes and sizes. Regardless of how they work,
they follow a similar pattern of gathering data and then converting it into
text-based logs that are easily parsed. I have built several task-specific
programs that extract data directly from the network. I mention several in
this article. I have also built scripts, both simple and complex, to convert
data from applications such as tcpdump and snort into text-based logs. For
consistency and simplicity, I like setting up my collectors to send their data
via syslog.

12 ; LO G I N : VO L . 35, N O. 4

LOG PARSERS

Most of the discussion up to this point has revolved around the evolution
of techniques used in our log parsers. Each parser converts the text-based
data recorded by the collectors into a pseudo-XML format that is ingestible
by overwatch. The name of the game with the parsers is speed: overwatch is
a batch-processing environment, so the log parsers determine how fast the
data is loaded and processed.

OVERWATCH

Overwatch is a general-purpose filter and pattern detector for arbitrary
text-based data. Its simple architecture and configuration belies the power
and effectiveness of the tool. The tool maintains n-dimensional matrixes of
weighted values. The dimensions, time scales, and weightings are configu-
rable and there is no hard-coded limit to the number of active matrixes.
To give you a taste for how overwatch works, I will work through building
a configuration to monitor, filter, and alert on DNS logs. Listing 1 shows a
record taken from a DNS sniffer [12] that I wrote for use with overwatch:

<rec>
<time>Mar 11 18:36:51</time>
<snort dad>123</snort dad>
<srcMac>0:15:c7:c5:22:40</srcMac>
<srcIp>10.131.239.206</srcIp>
<srcPort>32768</srcPort>
<dstMac>0:3:47:de:34:f3</dstMac>
<dstIp>192.41.162.30</dstIp>
<dstPort>53</dstPort>
<dnsId>63706</dnsId>
<qCount>1</qCount>
<qStr0>crl.comodoca.com</qStr0>
<qType>1</qType>
<qClass>1</qClass>
<aCount>0</aCount>
<authCount>0</authCount>
<rCount>1</rCount>
</rec>

L I S T I N G 1 : A R E C O R D I N P X M L C O N V E R T E D F R O M A D N S L O G E N T R Y

The pseudo-XML (pXML) begins and ends each log record with <rec> and
</rec>. The time attribute is not mandatory; overwatch will use the cur-
rent time for the record if the field is not present. The <snort dad> field is a
unique identifier for the DNS sniffer that sent the record. The other fields are
self-explanatory, although we will be using the <aCount> field in another
example to discriminate between DNS queries and answers. Next we will
build our matrix definition:

matrix dnsA
 options {
 alert channel = “/tmp”
 alert recipient =
 “dnsA.alerts”
 warn at 1000
 alert at 5000
 path “/tmp/dnsA”
 rotate hourly
 keyfields {

; LO G I N : AUGUST 201 0 M A KI N G SE N SE O F LO GS 13

 <dnsId>
 <reqIp>
 <aStr0>
 }
}

L I S T I N G 2 : A M A T R I X D E F I N I T I O N U S E D I N O V E R W A T C H ; T H E K E Y -
F I E L D S D E F I N E A T H R E E - D I M E N S I O N A L M A T R I X .

All matrix definitions begin with the “matrix” keyword. The options section
allows you to specify the paths to the data files and high- and low-water
marks as well as the time scale for each matrix. The example above puts
the data files in /tmp and sets the high-water mark to 5000, the low-water
mark to 1000, and the time scale to hourly. This means that data will be
placed in matrixes in one-hour increments and that when a value at a given
n-dimensional position in a given one-hour period exceeds 1000 a warn-
ing record will be written, and at 5000 an alert record will be written. The
keyfields keyword is where the dimensions are defined. dnsId is the DNS
ID associated with the logged query or answer. reqIp is the IP address of the
system that sent the query. aStr0 is the first answer string. Listing 2 defines
a three-dimensional matrix of dnsId, reqIp, and aStr0.

Now that we have defined our DNS matrix, let’s tell overwatch what to do
when it reads a DNS log record.

records matching {
 <aStr0> startswith “192.168.”
} insert into dnsA {
 bump +500
}

L I S T I N G 3 : A N O V E R W A T C H I N S E R T I O N R U L E T H A T A D D S 5 0 0 T O A
M A T R I X L O C A T I O N W H E N A S T R 0 B E G I N S W I T H 1 9 2 . 1 6 8

Insertion rules begin with the records keyword and have two parts. The first
is the match rule and the second is the insert rule. If the match rule is true,
the insert rule fires. You can think of the insert rule as a small program
that runs against the score values in the matrix. The example above defines
a match rule for the first answer string, <aStr0>. If the <aStr0> field starts
with the string “192.168.”, then the insert rule fires. This is interesting be-
cause the DNS logs are being collected from the edge of the network. In gen-
eral, an external DNS server should not be returning an RFC 1918 address
in response to a query for an external hostname. The insert rule adds 500 to
the matrix at the position associated with dnsId, reqIp, and aStr0. This rule
helped me find some malware that was using DNS answers to issue com-
mands to infected hosts.

The example above is very simple, but don’t be fooled. The power of over-
watch is in its configuration language. It is limited only by the imagination
of the user. Consider the following matrix definition and insertion rule for DNS:

matrix dnsConficker
 options {
 alert channel = “/tmp”
 alert recipient =
 “dnsConficker.alerts”
 warn at 1000
 alert at 5000
 path “/tmp/dnsConficker”
 rotate hourly
 keyfields {

14 ; LO G I N : VO L . 35, N O. 4

 <reqIp>
 }
}

records matching {
 <aCount> = 0
} insert into dnsConficker {
 bump +1
}

records matching {
 <aCount> greaterthan “0”
} insert into dnsConficker {
 bump -1
}

L I S T I N G 4 : T H I S I N S E R T I O N R U L E D E T E C T S C O N F I C K E R D N S F L O O D -
I N G B Y W A T C H I N G F O R M I S M A T C H E S B E T W E E N T H E N U M B E R O F D N S
R E Q U E S T S A N D R E S P O N S E S .

The matrix rule in Listing 3 is very similar to the example in Listing 2, with
the exception that keyfields only has one dimension, <reqIp>. The insertion
rules are a bit different. There is no hard-coded limit to the number of inser-
tion rules you can have for a given matrix. For this example I have created
two rules. The first adds 1 to the score for a given requesting IP address
each time the IP address sends a DNS query. The second subtracts 1 from
the score each time an answer to a query is received. This turned out to be a
simple way to detect Conficker [13] DNS flooding, as the majority of normal
DNS traffic gets at least as many answers as requests. Malware that sends
large volumes of bogus DNS traffic looks very different.

The match rules support the usual set of Boolean operators along with string
matching and regular expressions. It is also possible to define external files
with lists of values to test against. The lists turned out to be helpful in ap-
plying adjustments to the scores based on known good or bad criteria such
as blacklisted (bogon) networks and domains. A special-match rule calling
NBS (never before seen) allows for special insert rules when some value is
seen for the first time.

The insert rules support addition, subtraction, and multiplication of fixed
values or a value from the log records. I have used this several times. One
rule that returned unexpectedly useful information loaded firewall log data
into overwatch. It added the bytes out to the score for each destination IP
address and port and subtracted the bytes in. This provided a list of the des-
tination/port pairs where internal systems were sending more data outside
the network than they were receiving back in. Other than a short list of ser-
vices like email and VPN connections, most Internet services send more into
your network than out of it. Here is output from the rule using the dumpdb
overwatch command.

% dumpdb –d /tmp/fwByteCounts.2010.03.25.07 dump-all | sort –n –r
13080772 post.craigslist.org|443
619852 www.plusone.com|443
574766 63.240.253.71|443
86940 64.23.32.13|443
85037 www.invitrogen.com|443
79966 miggins.aqhostdns.com|2082
73957 198.140.180.213|443
62292 147.21.176.18|443

; LO G I N : AUGUST 201 0 M A KI N G SE N SE O F LO GS 15

61512 159.53.64.173|443
57494 63.240.110.201|443

The dumpdb command was built to aid in tuning the high- and low-water
marks for sending out warnings and alerts. As I tuned rules, I found it
useful as a stand-alone tool for generating actionable reports about data
collected in the overwatch matrixes. The score is the number of bytes out
minus the number of bytes in over a one-hour period. This simple rule can
detect command and control traffic, unauthorized VPN solutions, and other
IP leakage points. Most systems that show up on this list warrant special at-
tention from a security analyst.

A Huge Leap Forward in Log Analysis

It is not my intention to give you a complete dissertation on overwatch and
all of its capabilities much though I would love to do so. The point of this
high-level teaser is to show why I am no longer frustrated about my logs. I
now have a tool that is more than capable of finding those shifty “things,” or,
as Marcus calls them, “needles in the haystack.” In closing, I would like to
offer up what I see as the next logical step in the use of overwatch. We call it
distrust engineering and it goes something like this.

Systems that interact with “bad” systems are less trustworthy than systems
that don’t. “Bad” systems exhibit repeating and detectable properties. A
system that exhibits one of these properties is less trustworthy than a system
that does not exhibit any. A system that interacts with an untrustworthy
system is itself less trustworthy. Systems become trustworthy over time.

A negative score shows that a system is untrustworthy and a positive score
that it is trustworthy. If we use overwatch to keep track of our trust scores
then all we have to do is define what log records represent untrustworthy
properties. Once defined, we just need to build parsers that will send the log
records into overwatch and we will be able to maintain a near-real-time trust
map of all systems in our environment. This ever-changing map will show
malware incursions and blooms as well as their retreat as we respond to the
incursions. These rules don’t need to be complex, and the score adjustments
can vary depending on the weight of the event or property. Here are a few
attributes that would decrease a system’s trust score. I leave the “how-to” for
gathering data about each of these attributes as an exercise for the reader.

■■ Systems in un-trusted countries
■■ Systems with broken or missing DNS records
■■ Systems listed in DDNS services
■■ Systems on malware/spyware black lists
■■ Systems sending spam or email
■■ Systems sending packets that are blocked by your firewall
■■ Systems with new DNS records
■■ Systems running insecure operating systems
■■ Systems running unsafe browsers
■■ Systems with vulnerabilities
■■ Systems you have never seen before
■■ Systems flagged by your IDS systems
■■ Systems that have previously been infected with malware

The above is not meant to be an exhaustive list but merely a primer to get
you thinking in the hopes that our email will be flooded with suggestions,
rules, and parsers for overwatch.

16 ; LO G I N : VO L . 35, N O. 4

Conclusion

I have been using overwatch for several years now and my only frustration
is that I can’t spend more time building and testing new rules and adding
additional log sources to the system. My goal was to find a reasonable way
to find interesting anomalies in my log data that would help me reduce or
remove threats in my environment. I tried many approaches over the years,
starting with scripts and moving to log analysis tools and suites both open
source and commercial. None of them provided the filtering and detection
capabilities that I needed without having significant foreknowledge of the
threats. Marcus and I were able to design, build, and implement a general-
ized detector and filter for arbitrary text-based data. It is useful and effective
at detecting anomalous events with minimal prior knowledge or understand-
ing of the event. This required some initial planning and discussion about
what log data feeds might be interesting and ways to score the scenarios. As
with general log analysis, the best way to do it is to look at the logs, build
the rules, and prototype and test them.

REFERENCES

[1] http://sourceforge.net/projects/swatch/.

[2] http://www.gnu.org/software/xlogmaster/.

[3] http://www.ranum.com/.

[4] http://www.faqs.org/rfcs/rfc3164.html.

[5] http://dinosaur.compilertools.net/.

[6] http://en.wikipedia.org/wiki/Printf.

[7] http://www.uberadmin.com/Projects/quickparser/index.html.

[8] http://en.wikipedia.org/wiki/Huffman_coding.

[9] http://www.uberadmin.com/Projects/logstore/index.html.

[10] http://www.ranum.com/security/computer_security/code/nbs.tar.

[11] http://www.ranum.com/security/computer_security/code/overwatch.tar.

[12] http://www.uberadmin.com/Projects/pdnsd/index.html.

[13] http://en.wikipedia.org/wiki/Conficker.

