
Someone To Watch Over Me
Ronald Dilley, Executive Director, Warner Bros. Entertainment Inc.
Marcus Ranum, Chief of Security, Tenable Network Security, Inc.

(ron.dilley@gmail.com, mjr@ranum.com)

Tags: security, research, data leakage

Abstract

Determining where and how data may be leaking from a network is a
difficult problem. In many ways, it is the same problem as intrusion
detection: how do you sort a very small event from a vast mass of larger
ones? Our answer was to look for less frequent side effects that might
indicate a deeper problem, using a tool we developed called “Overwatch.”

This paper describes Overwatch and its configuration, as well as some
of the results we attained by running it on two large enterprise networks. We
were able to detect some interesting compromised systems as well as the
activities of day-zero exploits and the command/control communications of
malware like Conficker[1]. In practice, the tool has proven to be useful in a
number of ways that we never expected it to be.

Background and Motivation

In 2007, one of the authors was
charged with researching “data leakage
protection” products for a large biotech
firm. Investigating the then-current crop
of commercial offerings was not
productive: products offered little in the
way of predictable reliability and their
coverage of avenues for leakage was
spotty, at best. Re-purposing of existing
intrusion detection system (IDS)
architectures was examined and also
discarded, because the IDS tend to be
oriented toward reporting attack activity
rather than auditing data transfer and
document movement. Signature-based
detection algorithms have one weakness:
you have to already know what you’re
looking for; in this case we felt we could
write matching rules for a number of

obvious things like strings in
attachments but we’d mostly be
detecting “stupid” instead of “naughty.”
We were initially attracted to the
network-based anomaly detection
approach championed by commercial
IDS products such as Lancope[2] and
Arbor Networks’[3]; these products use
a scoring system atop network traffic
events, and classify activity as
potentially suspicious when it goes
above preset point-values. In 1994 one
of the authors used a similar approach
consisting of shell scripts and diff(1)
atop statistics collected by NNStat [4] –
work that led to components of the
Network Flight Recorder [5]. It was
decided to recommend an in-house
prototype effort, to get a feeling for the
problems inherent in data leakage
detection and to gain some experience in
advance of the next generation of

commercial offerings. We felt it would
be useful to have the “speeds and feeds”
already figured out, the data already
centralized, and a baseline notion of the
kind of false positive rates we could
expect.

The system design consisted of
three components: a syslog(8) collector,
a packet vacuum, and a scoring system
with the uninspired name, “Overwatch.”
The packet vacuum was responsible for
archival traffic collection of data headed
toward network egress points in addition
to serving as a DHCP traffic recorder,
URL sniffer, and general platform for
collecting whatever we thought was
worth collecting. TCP traces were
collected and stored on a large drive
array in a round-robin, indexed by
session-Ids and IP
source/port/destination. The eventual
objective was to have Overwatch
examine trace information about the
various data collected from the packet
and log vacuums as well as other
sources, then flag IP
source/port/destination combinations as
“suspicious.” Suspicious streams would
be queried out of the packet vacuum and
set aside for further analysis that would
possibly include passing them to a
conventional IDS or a commercial “data
leakage prevention” product. In a sense,
Overwatch would act as both an
anomaly detector in its own right as well
as a pre-filter for other detection
systems. From this point forward, our
paper concerns itself only with
Overwatch.

Overwatch

Overwatch is a scoring system
that manages databases of weighted
event counts. Overwatch maintains
multiple detection score-sheets called

“matrixes” each of which is updated and
monitored on a separate configurable
time-scale. There is no hard-coded limit
to how many can be supported in a
single instance of Overwatch, though
there are doubtless practical limits. We
never explored the limits of the system,
since the design of Overwatch allows an
arbitrary number of instances to be
running for purposes of parallelism, if
needed. In its normal run-state,
Overwatch operates as a daemon that is
controlled and fed through a UNIX-
domain1 socket, leaving its outputs in
structured directories according to its
configuration. It is fed via a standalone
utility that is both a command shell
interface and a data uploader (command:
“input”) that connects and disconnects
for each transaction. The uploaded data
is structured in a pseudo-XML2 (pXML)
format by external data collectors – for
example, a perl script converting
tcpdump output of bootps transactions
into pXML records. The example below
is from Ron Dilley’s DNS sniffer3,
converted to pXML:

1 It would have been quite easy to make it
network-reachable, but we thought that having to
engineer security into our security tool would be
inviting trouble.
2 pXML was designed “to avoid having to
answer questions like ‘why didn’t you use
XML?’ without having to actually use XML.”
3 Passive DNS sniffer (
http://www.uberadmin.com/Projects/pdnsd/index
.html)

<rec>
<time>Mar 11 18:36:51</time>
<snort dad>123</snort dad>
<srcMac>0:15:c7:c5:22:40</srcMac>
<srcIp>10.131.239.206</srcIp>
<srcPort>32768</srcPort>
<dstMac>0:3:47:de:34:f3</dstMac>
<dstIp>192.41.162.30</dstIp>
<dstPort>53</dstPort>
<dnsId>63706</dnsId>
<qCount>1</qCount>
<qStr0>crl.comodoca.com</qStr0>
<qType>1</qType>
<qClass>1</qClass>
<aCount>0</aCount>
<authCount>0</authCount>
<rCount>1</rCount>
</rec>

As far as Overwatch is
concerned, data is nothing more than
tagged strings and numbers. The tags are
arbitrary identifiers assigned by
whatever process creates the input
records. In the example above, all the
fields that were available in the DNS
transaction are marked-up and sent in to
Overwatch; everything between <rec>
and </rec> is treated as a connected blob
of input that otherwise has no structure.
We found it was valuable to make our
own dictionary of field tags to use for
the same values in all inputs, i.e.:
<srcIp> , <dstPort>, etc. We will discuss
the value of normalizing the field tags
later.

 In most logging applications,
dealing with time is fraught with fiddly
details; Overwatch was, unfortunately,
not exempted. The tagged <time> field
is treated as the absolute time at which
the event occurred and is parsed into a
clock value. Overwatch cannot be sure
that inputs are from the same time
window; they might be shuffled,
interleaved, or from some time in the
past – so it’s necessary to derive the
event time from the records themselves.
In its first version, ninety percent of
Overwatch’s CPU consumption was
spent in time-conversion. Gprof results
measured against real data sets

pinpointed the problem, and a
mechanism for caching date
computations was added, which resulted
in a forty-fold performance
improvement. Dealing with time forced
us to make some hard design decisions
surrounding handling of back-dated
records. Anticipating questions like,
“Did Bob’s emails transmitted jump
dramatically over the last year?” we
wanted to be able to seamlessly handle
data that was years old being mixed with
current data, using the current rules and
weightings. This gave the added benefit
of allowing tuning against historical data
to establish baselines.

Once a data record has been
unparsed into memory, Overwatch
applies a series of matching rules that
add matching records to score-sheet
matrixes, assigning them point values
based on the record contents. Each
matrix is indexed by a set of record
attributes, which are used to construct a
unique “key” value that holds the
cumulative score. Since everything is
treated as a string, internally, the keys
are simply concatenated with nulls, then
stored in dbm(1)-indexed databases that
are fronted by read/write caches. The
matching rules support a fairly robust set
of boolean primitives, based on the
contents of the pXML records:
records matching {
 <aStr0> startswith "192.168."
} insert into dnsA {
 bump +500
}

A match rule consists of a
matching portion which, if true, causes
the weighting modifiers to be applied
against the matching score in matrix
“dnsA.” The weighting modifiers
represent a miniature program that is run
against the score-sheet matrix’ values to
update them. In this manner, Overwatch

can be configured to differentially
weight categories or specific types of
events. For example, failed login
attempts attached to administrative
accounts might be treated as +20 point
events, whereas failed login attempts in
general might score +5 and successful
logins +1. The score-sheet matrix for
login tracking might consist of pairs of
user/host combinations or simply
usernames. In the former case, we would
be searching for unusual user activity on
a fairly detailed level, whereas in the
other we’d be looking for unusual
activity across all our systems. In
practice, we would set up Overwatch to
maintain both of those matrixes, and
separately tune the alert level high water
mark to increase or decrease their
sensitivity.

It’s possible to define multiple
rules that manipulate a single score-sheet
matrix based on different data inputs or
matching criteria:
matrix dnsA
 options {
 alert channel = "/tmp"
 alert recipient =
 "dnsA.alerts"
 warn at 1000
 alert at 5000
 path "/tmp/dnsA"
 rotate hourly
 keyfields {
 <dnsId>
 <reqIp>
 <aStr0>
 }
}

The sample matrix configuration
above shows how the score-sheet index
keys are constructed: in this example,
they are a concatenation of three fields,
which are extracted (if available) from
any records that are matched to apply
against the matrix. The alert
channel/recipient fields construct the
output pathnames for warnings that are
generated when any data value in the

matrix hits a high water mark. The
“rotation” value specifies the matrix’
“window size” - how often the matrix’
score values should be reset. When an
input record results in a particular
key/value pair in a score-sheet exceeding
its high water mark it is written to a
matrix-specific alert channel. If it does
not result in an alert, the record is stored
in a flat file and its offset is recorded in
the matrix’ database. When an alert is
generated, all the records that
accumulated the point-score to send a
given key/value pair “over the top” are
output along with the alert. It is possible,
for long-running or large data sets like
URL-access or DNS traffic, to turn off
the record storing behavior and rely just
on summaries. For the data leakage
application for which Overwatch was
initially built, the alert data were
converted into queries to issue against
the packet vacuum; a secondary process
spun on a directory looking for the
appearance of a file of alert data and
rolled the file before triggering the
query. The administrator received a
summary of the alert and its score, the
events that led up to the alert (and how
they were scored) as well as a link to a
pcap(3) file of all the packets still in the
packet vacuum that related to the events.

The scoring mechanism in the
match rules allows addition, subtraction,
multiplication, and adding a fixed per-
event “bump” value. Bump values
simply add to the score, which is very
useful if you want to generate a
weighted measure of event frequency.
Addition operations are useful if you
want to summarize an event; for
example, if a log record included the
number of kilobytes worth of file
attachments, a score might be
maintained by adding the attachment
sizes. Since all data is stored

persistently, there is a lot of potential for
generating interesting summary charts
from the databases kept by Overwatch.

To simplify the process of
maintaining lists for scoring,
Overwatch’s matching engine supports a
“match list” feature. Lists of strings can
be created and referred to as a single set,
so that groups of “known ports” or
“known strings” can be matched and
weighted differently. The same can be
accomplished with complicated
matching rules, but we felt it was
simpler to maintain lists for data such as
port numbers, process names, email
addresses, or web site names. The
matching rule language supports a
negation operator, so it is fairly easy to
apply different weightings for “member
of list” versus “not member of list.” In
retrospect, it would have been good to
add an if-else syntax to the matching
language, to eliminate the need to check
list membership twice in the member/not
member scenario.

An additional form of event
frequency tracking uses what we call
“Never Before Seen Anomaly
Detection” (NBS)[6]. The idea of NBS
is based on the simple observation that
the first time something happens, it’s
always an anomaly. Overwatch
maintains a separate NBS database for
event keys, and allows a scoring rule to
apply a special bump value for the first
time an event occurs. We have found
NBS to be very useful for things like
differentially scoring new MAC
addresses, new Email senders, new DNS
servers, new IP destination/service port
combinations, and so forth. Since
Overwatch is intended as a security tool,
we’re particularly concerned with early
detection of problems, so NBS helpfully
acts as a significance amplifier early in a

chain of events. In practice, NBS turned
out to be one of the more effective parts
of the scoring system. After loading a
months worth of fully qualified domain
names (fqdn) from proxy logs into the
system, changing the NBS bump value
in our matching rules to a value larger
than the high water mark presented us
with a short list of new domain names
per day. A quick glance over the list
identified high risk destinations visited
for the first time by internal hosts.
mjr@lyra-> ./dumpdb -d \
 /tmp/dnsQ.2009.03.11.18.index \
 summarize +1
 697 fe80::211:25ff:fe3e:9773
 657 fe80::211:25ff:fe41:b09
 624 177.185.151.198.in-addr.arpa
 463 fe80::211:25ff:fe41:a5e1
 417 wbamanp001
 341 ldap._tcp.WBCCTV.COM
 314 sb.r1.rdc.itiva.net
 188 172.222.234.207.in-addr.arpa
 158 ejlaptop.warnerbros.com
 80 sb.r3.rdc.itiva.net

The score-sheet matrix can also
be used as a summarizer for log data,
and can be quickly dumped in a variety
of ways. Since the Overwatch engine
may keep dirty data in its memory, there
is a command line interface (cli)
command that can be used to pause and
flush the engine, preventing
inconsistencies while queries are
performed. A database dumping utility
with the prosaic name of “dumpdb”
converts databases into plain text or
pXML, with a variety of sorting and
field-merging options. The resulting
information can be used to plot trends or
to quickly retrieve “top N” events, i.e.:
“top 20 web sites visited through the
proxy server” and “top IP addresses
accessing ports that we have not defined
as typical Internet services.” This tool
turned out to be very helpful in tuning
both the match-modify rules as well as
the high-water marks to optimize the
filtering.

Alerts and warnings include
summaries of the information that
produced a score:
WARNING: Sat Apr 11 18:40:41 2009
reference #4088 first seen in db: Sat Apr
11 18:40:41 2009
cumulative score 10505 with 3 events
Key Attributes used in computing this
event {
 DNSID=48769
 REQIP=10.131.239.206
 ASTR0=10.0.132.254.210.in-addr.arpa
}

Based on the reference number
included with the alert, the database
dumper can extract all the events related
to the alert, along with their score
values. Sometimes this is a great deal of
information, which is why it proved
practical to add the summary and data-
coalescing options to the database
dumper. For example, based on the
warning above, we might query for a
summary breakdown of connections
between the requesting IP address and
the destinations of its requests:
16576004 10.10.10.10
13080772 post.craigslist.org|443
619852 www.plusone.com|443
574766 63.240.253.71|443
86940 64.23.32.13|443
85037 www.invitrogen.com|443
79966 miggins.aqhostdns.com|2082
73957 198.140.180.213|443
62292 147.21.176.18|443
61512 159.53.64.173|443
57494 63.240.110.201|443

We are not under the illusion that
the system is completely automated;
unlike most signature-based intrusion
detection or data leakage systems, we
assumed from the outset that
experienced analysts were going to be
looking at the data produced on the
backend, and favored simple text tables
wherever possible. A separate research
project was launched to use large-scale
scientific visualization software to
examine trends in the data produced by
Overwatch.

Practical experience

Overwatch was originally
purposed to detect data leakage, but we
managed to also detect malware.
Conficker4, for example, left a rather
large footprint in the DNS usage matrix
during its regularly scheduled updates.
An infected host generated 50,000
predicable domain names and executed
DNS queries against random chunks of
them, each day. This pattern showed up
on our NBS rules as singular hosts
querying for large numbers of never
before seen domain names. Though this
was helpful in identifying possible
Conficker infected hosts, it still required
some time each day to filter through
valid NBS domains that matched the 4 to
9 character length and any one of the
110 TLDs the ‘C’ variant generated.
The domain names are pretty easy to
spot in a list as shown:
pojusjpvg.pl
yhgxgh.com.ar
phexuk.com.tr
xenryfcy.com.jm
xqnes.com.bo
akfzy.me
pfbtagrli.cx
ipodfx.com.ai
btwhzea.bo
cfatn.nl
wzbx.tw
urwgnc.com.fj
dbhmuven.tn

One of the authors added an
additional rule to reduce the matrix score
if there was a successful DNS answer.
This was done using a positive bump
rule that matched an outgoing DNS
request, and a negative bump rule that
subtracted the points again when it saw a
matching response. Negative bump rules
have proved very helpful in refining
some filters to de-emphasize “known
good” patterns such as query/response
and transmitted/received

4 Also known as Downadup, Downup, and Kido

acknowledgements. As the vast majority
of DNS requests for Conficker domains
fail, this immediately improved the
signal to noise ratio without the need for
manual review. A further improvement
which we considered (but did not
implement) was to add another bump
rule for any domain that matched one of
the Conficker TLDs.

Another simple Overwatch rule
that has proved very effective at
detecting malware command and control
traffic applies “number of bytes out”
minus “number of bytes in” on all
network communications. The matrix
definition includes the source IP,
destination IP and destination port. In
corporate environments, typically there
are very few situations where the amount
of data leaving the organization is
greater than the amount entering. Most
exceptions fall into the category of
business to business data transfers,
encrypted tunnels and e-mail. Most of
these transactions happen on well-known
sets of source or destination IP
addresses. When we first deployed this
rule we were surprised to discover that
three out of four destination addresses
had no reverse DNS records and of
those, the majority easily mapped to
known or suspected malware-friendly
internet service providers. This simple
rule continues to be effective at
identifying command and control traffic
for zero-day malware.

Overwatch has shown its
usefulness not only in identifying
malware, it is also effective at fulfilling
Sarbanes Oxley (SOX) related reporting
requirements. As all logs in our
environment are forwarded to a central
logging repository we built a set of rules
to process authentication success/failure
logs for UNIX and Windows systems.

The first version bumped the score on
login failures for a matrix of hostname
and login name with an NBS rule to
amplify the significance of new host-
login combinations. The output was a
daily report of systems where there were
a large number of login failures.

The following examples show
the simple login failure matching rules
for Windows logs:
records matching {
 <source> exactly "Authentication"
} insert into logins {
 nbs bump +1000
 bump +1
}
records matching {
 <eventid> not "540"
 and
 <eventid> not "528"
} insert into logins {
 bump +1000
}

The following is a report
generated using dumpdb:
208208 AGHSYILS3SD\phil.g.xxxxxx
104104 AGHSYILS3SD
13013 GREST01
23023 DBF345\SVC
23023 DBF345
20020 CFWPURP-TSPWV09\Administrator
23023 DBFCF01
10010 CFWPURP-TSPWV09

We implemented “too many failure”
detection by pairing a login failure rule
with a positive bump value against a
login success rule with a matching
negative bump value. A failure matched
with a success cancels itself out, but
unbalanced failures trip an alert.
Overwatch supports both high and low
water mark alerting; we were able to use
one matrix to track too many successful
logins as one problem, and too many
failures as another.

In terms of data quantities that
Overwatch handled at our installation,
we averaged about 50Gb of data daily
consisting of approximately 10Gb of

firewall logs, 2Gb of SMTP logs, and
40Gb of web proxy logs. This load was
handled with a single instance of
Overwatch with all the data being fed
into it sequentially. We didn’t put any
effort into worrying about performance
other than during the design phase of the
system, since the data handling was
parallelizable. Because the majority of
Overwatch’s CPU time is presently
spent in unparsing dates, we expect that
a faster/simpler date-unparsing routine
would be worth developing; most log
records come in time-clusters and
caching the date/month/year/GMT offset
computation could speed things up. The
input parsers used to select fields from
the static logs handle on the order of
100,000 log-lines per second. In general,
we were pleased with the performance of
the system; it was intended for batch
mode operations but offered near “real
time” results.

The biggest flaw in the
implementation of the system was a
result of Overwatch’s design as a batch
mode process. The daemon sits in a run
state and periodically expects
connections to feed it new data. While
it’s handling its input, the databases are
cached in memory and the server is
“busy” and will block the submission
process if something attempts to feed it
another data set. In a batch mode model,
this works acceptably, because the inputs
automatically serialize, but it also has
the effect of blocking queries or server
commands until the server is free to
handle them. Having to wait several
minutes for the server to chew through a
dataset can be frustrating while you’re in
the process of tuning the event weights.
If there were ever to be a Version 2.0 of
Overwatch, it would be nice to rethink
the mechanisms whereby data flows

through the system, though we think the
overall feature-set is pretty complete.

Lessons learned

The effort provided tangible data
relating to volume and types of data we
could extract from our network, logs,
and analysis. We also got a useful
baseline for the signal to noise ratio of
our security event logs, and the
effectiveness of our filtering, and found
Overwatch to be a flexible and powerful
tool for quickly exploring “what if?”
scenarios. Having the infrastructure in
place where we could quickly set up
rules to examine relationships between
event frequency and security/data
leakage events turned out to be
particularly valuable. Ron’s total time
between asking himself “could we detect
Conficker worm by looking at DNS
rates?” and having a functioning
‘Conficker detector’ was about 2 hours
with the majority of the time spent
loading old DNS logs into Overwatch to
seed the NBS data. More importantly,
that detector generalizes and might find
other interesting similar but unrelated
types of traffic.

If we were re-implementing the
system, we would now know enough to
invest more time in making aspects of
Overwatch and its operations faster. We
found that the work-flow had slow spots,
specifically around writing parsers to
translate and upload data, as well as
testing hypotheses for places where we
might detect something. It generally took
several hours to set up a matrix and
debug matching rules, with subsequent
testing runs to make sure the data was
being correctly parsed and input.
Sometimes the work wouldn’t pay off,
which was frustrating, and it was hard to
determine whether it was a result of

configuration or simply that there was
nothing to find.

Now that we have a better idea
how a system like Overwatch is used, we
would prefer to have made the daemon
process capable of handling multiple
streams of input, and would have
embedded the query/dumpdb process
into the daemon, itself. That would allow
the daemon process to cache index
information without having to worry
about consistency issues running
dumpdb against the files directly through
the filesystem. As it stands, debugging
an Overwatch configuration requires a
great deal of starting and stopping
processes, though much of these
problems could be overcome by writing
scripts that managed the details. Since
Overwatch only tries to do one thing at a
time, it’s impossible to query it while
uploading data to it without the query
blocking until the upload completes; this
exercises the patience of the analyst
more than is desirable. If there is a future
version of Overwatch, we intend to add
some statistical capabilities into the
matrix structures. It would be
interesting, for example, to compute
moving averages, or to be able to keep
summaries of historical trends in a
matrix (e.g.: what is the average number
of emails sent per host every month for
the last year?) We also think it might be
fruitful to have one matrix be able to
insert data into another, producing a sort
of massive roll-up report over time. It
would also be interesting to incorporate
external blacklists such as the Google
malware hosting site list or spam
sending list; we are investigating ways
of incorporating queries through external
APIs although it might make more sense
to simply do those queries as part of
producing the pXML to upload to
Overwatch.

In our initial design discussions
we realized that the problem we were
dealing with was that there was valuable
data hidden in our log data and the
volume, diversity and lack of
foreknowledge of the data prevented us
for getting to the tasty 'needle in the
haystack.’ Overwatch was our attempt
at building a filter that would allow us to
get at the needle. Most importantly, this
experience re-confirmed for us
something that we already knew: in log
analysis there is no amount of conjecture
that can be engaged in that is as valuable
as a few hours of actually looking at
your log data.

Conclusions

A generalized detector and filter
for arbitrary text based data is useful and
effective at detecting anomalous events
with little or no prior knowledge or
understanding of the event. We found
that by sitting around hypothesizing a
few “what if” scenarios, we were able to
relatively quickly prototype working
anomaly detectors; sometimes they paid
off, sometimes they didn’t. As we had
hoped, addition and subtraction turned
out to be as useful as complicated
statistics.

Availability

Overwatch is available in source
code form for noncommercial / research
use, though the documentation for it is
sparse. If there is enough interest to
warrant documenting it, we will do so.
Contact one of the authors if you’re
interested.

References
[1] An Analysis of Conficker's Logic and
Rendezvous Points, Phillip Porras, Hassen Saidi,

and Vinod Yegneswaran,
http://mtc.sri.com/Conficker, February 2009
[2] Lancope Stealthwatch™
http://www.lancope.com
[3] Arbor Networks Peakflow ™
http://www.arbornetworks.com
[4] Robert Braden and Annette DeSchon,
NSFNET Statistics Collection System NNSTAT,
USC Information Sciences Institute, December
1992
[5] Implementing a Generalized Tool for
Network Monitoring, Ranum et. al., Proceedings
of the 11th USENIX conference on System
administration, 1997
[6] Never Before Seen Anomaly Detection,
Marcus Ranum,
http://www.ranum.com/security/computer_securi
ty/code, August 2004

